Physics, asked by huna51, 3 months ago

solve it fast for brainlist​

Attachments:

Answers

Answered by BrainlyEmpire
1

TO FIND :–

  \\  \implies \sf  \int  \dfrac{ { \sec}^{2}(x).dx }{9 -  \tan(x) }  = ?\\

SOLUTION :–

• Let –

  \\  \implies \sf  P = \int  \dfrac{ { \sec}^{2}(x).dx}{9 -  \tan(x) } \\

• Now put tan(x) = t –

• Differentiate with respect to 't' –

  \\  \implies \sf  \dfrac{d \{\tan(x) \} }{dt}  =  \dfrac{d(t)}{dt}  \\

  \\  \implies \sf   \dfrac{d \{\tan(x) \} }{dt}  =1\\

  \\  \implies \sf { \sec}^{2} (x) \dfrac{dx}{dt} = 1\\

  \\  \implies \sf { \sec}^{2} (x)dx = dt\\

• So that –

  \\  \implies \sf  P = \int  \dfrac{dt}{9 -t } \\

  \\  \implies \sf  P =( - 1) \int  \dfrac{dt}{t - 9} \\

• Using identity –

  \\  \large\implies{ \boxed{\sf \int  \dfrac{dx}{x} =  \ln|x|}} \\

• So that –

  \\  \implies \sf  P =( - 1) \ln|{t - 9}|+c\\

  \\  \implies \sf  P = \ln|\bigg( \dfrac{1}{t - 9} \bigg)|+ c\\

• Now replace 't' –

  \\ \large\implies{ \boxed{ \sf  P = \ln \bigg(|\dfrac{1}{ \tan x- 9} | \bigg) + c}}\\

Answered by BʀᴀɪɴʟʏAʙCᴅ
1

☘️ See the attachment picture for Explanation.

\Large\mathbb\pink{THANKS} \\

\Large\mathbb\green{HOPE\: IT'S\: HELPFUL} \\

Attachments:
Similar questions