Solve it Fast Guyz and please follow me.
Answers
★ Solution
Taking LCM in LHS , we get
Using quadratic formula ,
Here a = 7 b = -58 c = 115
Solution
\dfrac{x - 2}{x - 3} + \dfrac{3x - 11}{x - 4} = \dfrac{4x + 13}{x + 1}
x−3
x−2
+
x−4
3x−11
=
x+1
4x+13
Taking LCM in LHS , we get
\dfrac{(x - 2)(x - 4) + (x - 3)(3x - 11)}{(x - 3)(x - 4)} = \dfrac{4x + 13}{x + 1}
(x−3)(x−4)
(x−2)(x−4)+(x−3)(3x−11)
=
x+1
4x+13
\dfrac{ ({x}^{2} - 4x - 2x + 8) + ( {3x}^{2} - 11x - 9x + 33) }{( {x}^{2} - 4x - 3x + 12)} = \dfrac{4x + 13}{x + 1}
(x
2
−4x−3x+12)
(x
2
−4x−2x+8)+(3x
2
−11x−9x+33)
=
x+1
4x+13
\dfrac{ {4x}^{2} - 26x + 41 }{ {x}^{2} - 7x + 12 } = \dfrac{4x + 13}{x + 1}
x
2
−7x+12
4x
2
−26x+41
=
x+1
4x+13
4 {x}^{3} + 4 {x}^{2} - 26 {x}^{2} - 26x + 41x + 41 = 4 {x}^{3 } + 13 {x}^{2} - 28 {x}^{2} - 91x + 48x + 1564x
3
+4x
2
−26x
2
−26x+41x+41=4x
3
+13x
2
−28x
2
−91x+48x+156
4 {x}^{2} - 26 {x}^{2} - 13 {x}^{2} + 28 {x}^{2} - 26x + 41x + 91x - 48x + 41 - 156 = 04x
2
−26x
2
−13x
2
+28x
2
−26x+41x+91x−48x+41−156=0
- 7 {x}^{2} + 58x - 115 = 0−7x
2
+58x−115=0
7 {x}^{2} - 58x + 115 = 07x
2
−58x+115=0
Using quadratic formula ,
x = \dfrac{ - b± \sqrt{ {b}^{2} - 4ac} }{2a}x=
2a
−b±
b
2
−4ac
Here a = 7 b = -58 c = 115
x = \dfrac{58± \sqrt{ {( - 58)}^{2} - 4 \times 7 \times 115 } }{14}x=
14
58±
(−58)
2
−4×7×115
x = \dfrac{58 + 12}{14} or \: \dfrac{58 - 12}{14}x=
14
58+12
or
14
58−12
x = 5 \: or \: \dfrac{23}{7}x=5or
7
23