Math, asked by nishantdhiman2843, 6 months ago

solve it fast no spam no copied​

Attachments:

Answers

Answered by Ves1857
0

Refer attachment for your answer...

Attachments:
Answered by aryan073
0

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□

\huge\purple{\sf{\underline{Required \: Answer}}}

Given:

\quad\bullet\displaystyle\bf{ \: \dfrac{tan^2A}{tan^2A-1}+\dfrac{cosec^2A}{sec^2A-cosec^2A}=\dfrac{1}{1-2cos^2A}}

Properties :

  \quad \bullet \bf \:  {sin}^{2} x +  {cos}^{2}x = 1 \:

 \:  \quad \bullet \bf \: tanx =  \frac{sinx}{cosx}

 \quad \bullet \bf \: cosecx=  \frac{1}{sinx}

 \quad \bullet \bf \: secx =  \frac{1}{cosx}

\huge\green{\sf{\underline{Solution:}}}

  \\  \qquad\implies  \displaystyle \sf \:  \frac{ {tan}^{2}x }{ {tan}^{2} x - 1}  +  \frac{ {cosec}^{2}x }{ {sec}^{2}x -  {cosec}^{2}  x}

 \:  \qquad \ \displaystyle  \underline{\sf { \star \: bring \: it \: into \: sinx \: and \: cosx}}

 \:  \\  \qquad \implies \displaystyle \sf \:  \frac{ \frac{ {sin}^{2}x}{ {cos}^{2}x} }{ \frac{ {sin}^{2}x  }{ {cos}^{2}x } - 1 }  +  \frac{ \frac{1}{ {sin}^{2} x} }{ \frac{1}{ {cos}^{2} x}  -  \frac{1}{ {sin}^{2}x } }

 \qquad \implies \displaystyle \sf \:  \frac{ \frac{ {sin}^{2}x }{ {cos}^{2}x } }{ \frac{ {sin}^{2}x -  {cos}^{2}x  }{ {cos}^{2} x} }  +  \frac{ \frac{1}{ {sin}^{2}x } }{ \frac{ {sin}^{2}x -  {cos}^{2} x }{ {sin}^{2}x {cos}^{2} x } }

  \\ \qquad \implies \displaystyle \sf \:  \frac{ {sin}^{2}x }{ {sin}^{2}x -  {cos}^{2}x }  +  \frac{ {cos}^{2}x}{ {sin}^{2}x -  {cos}^{2}x}

 \qquad \implies \displaystyle \sf \:  \frac{ {sin}^{2} x +  {cos}^{2}x }{ {sin}^{2}x -  {cos}^{2}x }

 \:  \qquad \implies \displaystyle \sf \:  \frac{1}{ {sin}^{2}x -  {cos}^{2} x }

 \:  \qquad \displaystyle \sf \star \: put \:  {sin}^{2}x = 1 -  {cos}^{2} x

 \:  \qquad \implies \displaystyle \sf \:  \frac{1}{1 - 2 {cos}^{2}x }

 \bigstar\ \large \underline{ \bf{hence \: proved}}

  \\  \therefore \boxed{ \displaystyle \sf{ \underline{ \:  \frac{ {tan}^{2}x }{ {tan}^{2}x - 1 }  +  \frac{ {cosec}^{2}x }{ {sec}^{2}x -  {cosec}^{2} x}  =  \frac{1}{1 - 2 {cos}^{2}x } }}}

\green{■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□}

Hope this answer helps u

Similar questions