Math, asked by priyanshu44490, 2 months ago

solve it fast please​

Attachments:

Answers

Answered by puneetb642
1

hence X is 3 and y is 2

this is full answer

Attachments:
Answered by Anonymous
16

 \mathtt{SOLUTION:-}

\implies\tt\purple{ \frac{10}{x + y}  +  \frac{2}{x - y} = 4 }

\implies\tt\purple{ \frac{15}{x + y}   -   \frac{5}{x - y} =  - 2 }

\implies\tt{LET \:  \:  \frac{1}{x + y}   = a \:  \:  \:  \: and \:  \:  \:   \frac{1}{x - y}  = b}

\implies\tt{NOW,}

\implies\tt\purple{10a + 2b - 4 = 0 \:  \:  \:  \: eq(i)}

\implies\tt\purple{15a - 5b + 2 = 0 \:  \:  \:  \: eq(ii)}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \mathtt{NOW,  \: USING  \:   CROSS\:   MULTIPLICATION \: METHOD}

\implies\tt\purple{ \frac{a}{4 - 20}  =  \frac{b}{ - 60 - 20}  =  \frac{1}{ - 50 - 30} }

\implies\tt\purple{ \frac{a}{ - 16}  =  \frac{b}{ -80}  =  \frac{1}{  - 80} }

\implies\tt\purple{ \frac{a}{ - 16}  =  \frac{1}{  - 80} }

\implies\tt\purple{ {a} =  \frac{ - 16}{  - 80} }

\implies\tt\purple{a =  \frac{1}{5} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\implies\tt\purple{ \frac{b}{ - 80}  =  \frac{1}{ - 80} }

\implies\tt\purple{b = 1}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \implies\tt\purple{ \frac{1}{x + y}  = a}

\implies\tt\purple{ \frac{1}{x + y}  =  \frac{1}{5} }

\implies\tt\purple{x + y = 5 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: eq(iii)}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\implies\tt\purple{ \frac{1}{x - y}  =  \frac{1}{1} }

\implies\tt\purple{ \frac{1}{x - y} = 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: \: eq(iv) }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\implies\tt{NOW, \: USE \:  ELIMINATION  \: METHOD \:  FOR  \: EQ \:  (iii)  \: and  \: (iv)}

\implies\tt\purple{x  + y = 5}

\implies\tt\purple{x - y = 1}

\implies\tt\purple{2x = 6}

\implies\tt\purple{x = 3}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\implies\tt\purple{x + y = 5}

\implies\tt\purple{3 + y = 5}

\implies\tt\purple{y = 2}

Similar questions