Math, asked by 8wowksgdw8wiw, 1 month ago






solve it fast...please​

Attachments:

Answers

Answered by Dioretsa
1

Substitute the value of a and b in + - 4ab

 \sf {\left({\dfrac{{\sqrt{2}+1}}{\sqrt{2}-1}} \right)}^2 + \sf {\left({\dfrac{{\sqrt{2}-1}}{\sqrt{2}+1}} \right)}^2 - 4 \sf {\left({\dfrac{{\sqrt{2}+1}}{\sqrt{2}-1}} \right)} \sf {\left({\dfrac{{\sqrt{2}-1}}{\sqrt{2}+1}} \right)}

 \sf{= {\left({\dfrac{{\sqrt{2}+1}}{\sqrt{2}-1}} \right)}^2 + \sf {\left({\dfrac{{\sqrt{2}-1}}{\sqrt{2}+1}} \right)}^2 - 4 × {\dfrac{{\sqrt{2}+1}}{\sqrt{2}-1}} × {\dfrac{{\sqrt{2}-1}}{\sqrt{2}+1}}}

 \sf{\boxed {{\left({\dfrac{{\sqrt{2}+1}}{\sqrt{2}-1}} \right)}^2 = {\dfrac{3+2{\sqrt{2}}}{3-2{\sqrt{2}}}}}}

 \sf{\boxed{{\left({\dfrac{{\sqrt{2}-1}}{\sqrt{2}+1}} \right)}^2 = {\dfrac{3-2{\sqrt{2}}}{3+2{\sqrt{2}}}}}}

 \sf{\boxed{{4 × {\dfrac{{\sqrt{2}+1}}{\sqrt{2}-1}} × {\dfrac{{\sqrt{2}-1}}{\sqrt{2}+1 } = 4}}}}

 \sf={\dfrac{3+2{\sqrt{2}}}{3-2{\sqrt{2}}}} + \sf{\dfrac{3-2{\sqrt{2}}}{3+2{\sqrt{2}}}-4}

 {\boxed{ {\sf{combine~the~fractions~ \sf={\dfrac{3+2{\sqrt{2}}}{3-2{\sqrt{2}}}} + \sf{\dfrac{3-2{\sqrt{2}}}{3+2{\sqrt{2}}}}}} = 34}}

 \sf{=34-4}

 \sf{=30}

Similar questions