Math, asked by chubbygirl, 1 year ago

solve it fast plz..​

Attachments:

Answers

Answered by siddhartharao77
10

Step-by-step explanation:

Given:(\frac{3}{2} x+ 1)^3

=>(\frac{3x}{2} + 1)^3

∴ (a + b)³ = a³ + b³ + 3a²b + 3ab²

=>(\frac{3x}{2})^3 + (1)^3 + 3(\frac{3x}{2})^2(1) + 3(\frac{3x}{2})(1)^2

=>\boxed{ \frac{27x^3}{8}+1+\frac{27x^2}{4}+\frac{9x}{2}}

Hope it helps!


Anonymous: Hii Siddharth Bhaiya...
Anonymous: :)
siddhartharao77: hello
Answered by Anonymous
11
\huge\bf\pink{\mid{\overline{\underline{Your\: Answer}}}\mid}

27{x}^{3}/8 + 1 + 27{x}^{2}/4 + 9x/2

step-by-step explanation:

A.T.Q.,

We have to find the value of,

{(3x/2+1)}^{3}

Now,

we know that,

{(a+b)}^{3}= {a}^{3}+{b}^{3}+3{a}^{2}b+3a{b}^{2}

Observing this,

a = 3x/2

b = 1

putting the value of a and b in the formula,

we get,

{(3x/2+1)}^{3}

= {(3x/2)}^{3}+{1}^{3}+3{(3x/2)}^{2}×1 + 3(3x/2){1}^{2}

= 27{x}^{3}/8 + 1 + 3×(9{x}^{2}/4) + 3(3x/2)

= 27{x}^{3}/8 + 1 + 27{x}^{2}/4 + 9x/2

surjit55: nice answer ^_^
surjit55: ^_^ ...
Similar questions