Math, asked by laluHere, 5 months ago

solve it fasttt.....,.

Attachments:

Answers

Answered by BrainlyEmpire
56
GIVEN :–

• Quadratic equation x² - kx + (k² + 7k + 15) = 0.

• Roots of quadratic equation  \implies \bf \:\: x_1 \: and \: x_2 \:\:

TO FIND :–

• Maximum value of  \bf \:\: x_1^{2} +x_2^{2} = ?\:\:

SOLUTION :–

• We should write this as –

\\\implies\bf x_1^{2} +x_2^{2} =(x_1 + x_2)^{2} - 2(x_1)(x_2)\: \: \: \: \:\: - - - -eq.(1)

• We know that –

\\\implies\bf Sum \: \: of \: \: roots = - \dfrac{Coefficient \: \: of \: \: x}{Coefficient \: \:of \: \: {x}^{2} }\:\:

\\\implies\bf x_1 + x_2= - \dfrac{( - k)}{1}\:\:

\\\implies\bf x_1 + x_2=k \: \: \: \: \:\: - - - -eq.(2)

• And –

\\\implies\bf Product \: \: of \: \: roots = \dfrac{Constent \: \: term}{Coefficient \: \:of \: \: {x}^{2} }\:\:

\\\implies\bf (x_1)( x_2)= \dfrac{( {k}^{2} + 7k + 15)}{1}\:\:

\\\implies\bf (x_1)( x_2)={k}^{2} + 7k + 15 \: \: \: \: \:\: - - - -eq.(3)

• Put the values from eq.(3) & eq.(2) in eq.(1)

\\\implies\bf x_1^{2} +x_2^{2} =(k)^{2} - 2({k}^{2} + 7k + 15)

• Let –

\\\implies\bf x_1^{2} +x_2^{2} =P

• So that –

\\\implies\bf P =k^{2} - 2{k}^{2} - 14k - 30

\\\implies\bf P = - {k}^{2} - 14k - 30

• Now Differentiate with respect to 'k' –

\\\implies\bf \dfrac{dP}{dk} = -2k- 14

• For Maximum/Minimum –

\\\implies\bf \dfrac{dP}{dk} = 0

\\\implies\bf -2k- 14= 0

\\\implies\bf 2k + 14= 0

\\\implies\bf 2k = - 14

\\\implies \large{ \boxed{\bf k = -7}}

• Now 'P' –

\\\implies\bf P_{max} = - {(- 7)}^{2} - 14( - 7) - 30

\\\implies\bf P_{max} = -49 + 98 - 30

\\\implies\bf P_{max} = 98 - 79

\\\implies \large{ \boxed{\bf P_{max} =19}}

▪︎ Hence , Maximum value of  \bf \:x_1^{2} +x_2^{2} \: is 19.
Answered by HariesRam
19

Answer:

K = -7

and

P max = 19.

............

Similar questions