Math, asked by ops86, 6 months ago

solve it fasttttt ?????? ​

Attachments:

Answers

Answered by BrainlyEmpire
112

Answer:-

• Acceleration \large\leadsto\boxed{\sf\green{1.67 \: ms^{-2}}}

• Distance travelled \large\leadsto\boxed{\sf\green{106.8 \: m}}

• Given:-

Initial velocity[u] = 24 kmh-¹ → 6.67 ms-¹

Final velocity [v] = 72 kmh-¹ → 20 ms-¹

Time [t] = 8 sec.

• To Find:-

Acceleration [a] = ?

• Solution:-

Firstly,

• Using the 1st equation of motion:-

\pink{\bigstar}\large\boxed{\sf\purple{v = u + at}}

\sf{20 = 6.67 + \bf{a} \times 8}

\sf{20 - 6.67 = 8 \bf{a}}

\sf{8 {\bf{a}} = 13.33}

\sf{{\bf{a}} = \dfrac{13.33}{8}}

\sf{{\bf{a}} = 1.66625 \approx 1.67}

\implies\boxed{\bf\red{a = 1.67 \: ms^{-2}}}

Now, to calculate distance,

• Using the 3rd equation of motion:-

\pink{\bigstar}\large\boxed{\sf\purple{s = ut + \dfrac{1}{2} at^2}}

\sf{6.67 \times 8 + \dfrac{1}{2} \times 1.67 \times {8}^{2}}

\sf{53.36 + 0.835 \times 64}

\sf{53.36 + 53.44}

\implies\boxed{\bf\red{s = 106.8 \: m}}

• Therefore, the acceleration will be 1.67 ms-² and the distance travelled in 8 seconds will be 106.8 m.

Answered by Anonymous
54

Answer:

Solution:-

Firstly,

• Using the 1st equation of motion:-

\pink{\bigstar}\large\boxed{\sf\orange{v = u + at}}

\sf{20 = 6.67 + \bf{a} \times 8}

\sf{20 - 6.67 = 8 \bf{a}}

\sf{8 {\bf{a}} = 13.33}

\sf{{\bf{a}} = \dfrac{13.33}{8}}

\sf{{\bf{a}} = 1.66625 \approx 1.67}

\implies\boxed{\bf\pink{a = 1.67 \: ms^{-2}}}

Now, to calculate distance,

• Using the 3rd equation of motion:-

\pink{\bigstar}\large\boxed{\sf\blue{s = ut + \dfrac{1}{2} at^2}}

\sf{6.67 \times 8 + \dfrac{1}{2} \times 1.67 \times {8}^{2}}

\sf{53.36 + 0.835 \times 64}

\sf{53.36 + 53.44}

\implies\boxed{\bf\pink{s = 106.8 \: m}}

Therefore, the acceleration will be 1.67 ms-² and the distance travelled in 8 seconds will be 106.8 m.

Answered by Anonymous
58

Answer:

Solution:-

Firstly,

• Using the 1st equation of motion:-

\pink{\bigstar}\large\boxed{\sf\orange{v = u + at}}

\sf{20 = 6.67 + \bf{a} \times 8}

\sf{20 - 6.67 = 8 \bf{a}}

\sf{8 {\bf{a}} = 13.33}

\sf{{\bf{a}} = \dfrac{13.33}{8}}

\sf{{\bf{a}} = 1.66625 \approx 1.67}

\implies\boxed{\bf\pink{a = 1.67 \: ms^{-2}}}

Now, to calculate distance,

• Using the 3rd equation of motion:-

\pink{\bigstar}\large\boxed{\sf\blue{s = ut + \dfrac{1}{2} at^2}}

\sf{6.67 \times 8 + \dfrac{1}{2} \times 1.67 \times {8}^{2}}

\sf{53.36 + 0.835 \times 64}

\sf{53.36 + 53.44}

\implies\boxed{\bf\pink{s = 106.8 \: m}}

Therefore, the acceleration will be 1.67 ms-² and the distance travelled in 8 seconds will be 106.8 m.

Similar questions