Math, asked by misty2356, 10 months ago

solve it for 50 points spam will be reported​

Attachments:

Answers

Answered by Anonymous
1

Answer:

{\longrightarrow{\boxed{\sf{x = \dfrac{-6 \pm \sqrt{-4}}{2}}}}}

Step-by-step explanation:

\longrightarrow\sf{x^{2} + 6x + 10 = 0}

here,

  • a = 1,
  • b = 6,
  • c = 10.

So,

\longrightarrow\sf{1x^{2} + 6x + 10 = 0}

Using quadratic formula:

{\boxed{\sf{x = \dfrac{-b \pm \sqrt{b^{2} - 4ac}}{2a}}}}

Calculations:-

\longrightarrow\sf{x = \dfrac{-(6) \pm \sqrt{(6)2 - 4(1)(10)}}{2(1)}}

{\longrightarrow{\boxed{\sf{x = \dfrac{-6 \pm \sqrt{-4}}{2}}}}}

Therefore, this is the required answer.

Answered by BRAINLYADDICTOR
17

★FIND:

The value of 'x'

★GIVEN,

\bold{x^2+6x+10=0}

★SOLUTION:

\bold{x^2+6x+10=0}

\bold{where, }

\bold{a=1,} \bold{b=6,} \bold{c=10}

x =  \frac{ - b +  -  \sqrt{b {}^{2}  - 4ac}  }{2a}

x =  \frac{ - 6 +  -  \sqrt{36 - 4(1)(10)} }{2(1)}  \\  =  \frac{ - 6 +  -  \sqrt{36 - 40} }{2}  \\  =   \frac{ - 6 +  -  \sqrt{ - 4} }{2}  \\  =  \frac{ - 6 +  -  \sqrt{4i {}^{2} } }{2}   \\ (i {}^{2} =  - 1)  \\  =  \frac{ - 6 +  -  \sqrt{4}i }{2}  \\  =  \frac{ - 6 +  - 2i}{2}  \\  =  - 3 +  - i \\ x =  - 3 +  - i

Similar questions