Math, asked by misty2356, 3 months ago

solve it for 50 points spam will be reported​

Attachments:

Answers

Answered by BrainlyPopularman
29

GIVEN :

  \\ \bf \longrightarrow x { \sin }^{3} ( \alpha )  + y { \sin}^{3}( \alpha ) =  \sin( \alpha ) \cos( \alpha ) \\

  \\ \bf \longrightarrow x { \sin }( \alpha )  -  y { \cos}( \alpha ) = 0\\

TO FIND :

• Value of x² + y² = ?

SOLUTION :

• According to the question –

  \\ \bf \implies x { \sin }( \alpha )  -  y { \cos}( \alpha ) = 0\\

  \\ \bf \implies x { \sin }( \alpha )   = y { \cos}( \alpha ) \\

  \\ \bf \implies x = y \dfrac{ { \cos}( \alpha )}{{ \sin }( \alpha )} \:\:\:\:\:----eq.(1)\\

• Put the value of 'x' in other given equation –

  \\ \bf \implies y \dfrac{ { \cos}( \alpha )}{{ \sin }( \alpha )} { \sin }^{3} ( \alpha )  + y { \sin}^{3}( \alpha ) =  \sin( \alpha ) \cos( \alpha ) \\

  \\ \bf \implies y { \cos}( \alpha ){ \sin }^{2} ( \alpha )  + y { \sin}^{3}( \alpha ) =  \sin( \alpha ) \cos( \alpha ) \\

  \\ \bf \implies y { \cos}( \alpha )\sin ( \alpha )  + y { \sin}^{2}( \alpha ) =\cos( \alpha ) \\

  \\ \bf \implies y\sin ( \alpha )\{{ \cos}( \alpha ) + \sin ( \alpha ) \} =\cos( \alpha ) \\

  \\ \bf \implies y = \dfrac{\cos( \alpha )}{\sin ( \alpha )\{{ \cos}( \alpha ) + \sin ( \alpha ) \}}\\

  \\ \large\implies{ \boxed{ \bf y = \dfrac{\cos( \alpha )}{\sin ( \alpha )\{{ \cos}( \alpha ) + \sin ( \alpha ) \}}}}\\

• Put the value of 'y' in eq.(1) –

  \\ \bf \implies x =  \bigg \{\dfrac{\cos( \alpha )}{\sin ( \alpha )\{{ \cos}( \alpha ) + \sin ( \alpha ) \}}\bigg \} \dfrac{ { \cos}( \alpha )}{{ \sin }( \alpha )}\\

  \\ \large\implies{ \boxed{ \bf x = \dfrac{\cos^{2} ( \alpha )}{\sin^{2}  ( \alpha )\{{ \cos}( \alpha ) + \sin ( \alpha ) \}}}}\\

• Now Let's find –

  \\ \implies \bf {x}^{2} +  {y}^{2} = \bigg \{{\dfrac{\cos^{2} ( \alpha )}{\sin^{2}  ( \alpha )\{{ \cos}( \alpha ) + \sin ( \alpha ) \}} \bigg \}}^{2} +  \bigg \{ {\dfrac{\cos( \alpha )}{\sin ( \alpha )\{{ \cos}( \alpha ) + \sin ( \alpha ) \}}} \bigg \}^{2}\\

  \\ \implies \bf {x}^{2} +  {y}^{2} = {\dfrac{\cos^{2} ( \alpha )}{\sin^{2}  ( \alpha )\{{ \cos}( \alpha ) + \sin ( \alpha ) \}^{2} }}  \bigg \{ \dfrac{\cos^{2} ( \alpha )}{\sin^{2}  ( \alpha )}+1 \bigg \}\\

  \\ \implies \bf {x}^{2} +  {y}^{2} = {\dfrac{\cos^{2} ( \alpha )}{\sin^{2}  ( \alpha )\{{ \cos}( \alpha ) + \sin ( \alpha ) \}^{2} }}  \bigg \{ \dfrac{\cos^{2} ( \alpha ) +\sin^{2}  ( \alpha )}{\sin^{2}  ( \alpha )} \bigg \}\\

  \\ \implies \bf {x}^{2} +  {y}^{2} = {\dfrac{\cos^{2} ( \alpha )}{\sin^{2}  ( \alpha )\{{ \cos}( \alpha ) + \sin ( \alpha ) \}^{2} }}  \bigg \{ \dfrac{1}{\sin^{2}  ( \alpha )} \bigg \}\\

  \\ \implies \bf {x}^{2} +  {y}^{2} = {\dfrac{\cos^{2} ( \alpha )}{\sin^{4}  ( \alpha )\{{ \cos}( \alpha ) + \sin ( \alpha ) \}^{2} }}\\

  \\ \implies \bf {x}^{2} +  {y}^{2} = {\dfrac{\cos^{2} ( \alpha )}{\sin^{4}  ( \alpha )\{{ \cos} ^{2} ( \alpha ) + \sin  ^{2} ( \alpha ) + 2 \cos( \alpha )  \sin( \alpha ) \}}}\\

  \\ \implies \bf {x}^{2} +  {y}^{2} = {\dfrac{\cot^{2} ( \alpha )}{\sin^{2}  ( \alpha )\{1+ 2 \cos( \alpha )  \sin( \alpha ) \}}}\\

  \\ \implies \large{ \boxed{\bf {x}^{2} +  {y}^{2} = {\dfrac{\cot^{2} ( \alpha ) cosec^{2} ( \alpha ) }{1+ 2 \cos( \alpha )  \sin( \alpha ) }}}}\\

Answered by ƦαıηвσωUηıcσяη
0

\huge\mathcal{\fcolorbox{purple}{azure}{\pink{➳Aɳʂɯҽɾ}}}

Refer to attachment.

\purple{\rule{200pt}{5pt}}

Attachments:
Similar questions