Math, asked by alfabhumika, 1 month ago

solve it guys. you guys are really intelligent​

Attachments:

Answers

Answered by Anonymous
25

Given :

It is given that \sf x^4+\dfrac{1}{x^4}=194

 \\

To find :

We've to find the value of \sf x^3+\dfrac{1}{x^3}

 \\

Solution :

 \sf : \implies  {( {x}^{2}  +  \dfrac{1}{ {x}^{2} } )}^{2} =  {x}^{4}  +  \dfrac{1}{ {x}^{4} }  + 2 {x}^{2} ( \dfrac{1}{ {x}^{2} } )

 \sf :  \implies( {x}^{2}  +  \dfrac{1}{ {x}^{2} } )^{2} = 194 + 2

 \sf  : \implies( {x}^{2}  +  \dfrac{1}{ {x}^{2} } )^{2} = 196

 \sf  : \implies( {x}^{2}  +  \dfrac{1}{ {x}^{2} } ) =  \sqrt{196}

 \sf :  \implies( {x}^{2}  +  \dfrac{1}{ {x}^{2} } ) = 14

Here,

 \sf  : \implies(x +  \dfrac{1}{x} )^{2} =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  + 2x( \dfrac{1}{x} )

 \sf :  \implies(x +  \dfrac{1}{x} )^{2} = 14 + 2

 \sf :  \implies( x +  \dfrac{1}{x} )^{2} = 16

 \sf :  \implies(x +  \dfrac{1}{x} ) =  \sqrt{16}

 \sf :  \implies(x \times  \dfrac{1}{x} ) = 4

Now, we'll cube on both sides :

 \sf :      \implies(x +  \dfrac{1}{x})^{3} =  {(4)}^{3}

 \sf :  \implies x^{3} +  \dfrac{1}{ {x}^{3} } + 3 x( \dfrac{1}{x} (x +  \dfrac{1}{x} )) = 64

 \sf  :  \implies x^{3} +  \dfrac{1}{x^{3}}  + 3(4) = 64

 \sf :  \implies x^{3} +  \dfrac{1}{ {x}^{3} }  + 12 = 64

 \sf:  \implies x^{3} +  \dfrac{1}{ {x}^{3} }  = 64 - 12

  \: \boxed{ \therefore \sf   \:  x^{3} +  \dfrac{1}{ {x}^{3} }  = 52}

Similar questions