Math, asked by attitudegirl80, 11 months ago

Solve it if u can

But no need to SPAM plzz​

Attachments:

Answers

Answered by Anonymous
58

{\overbrace{\underbrace{\purple{Answer}}}}.

__________

Given here.

a + b 7 = (3 + 7)/(3 - 7 ).

[ Rationalize of denominator ]

=> a + b√7 = (3+√7)(3+√7)/(3-√7)(3+√7).

=> a+b√7 = (9 + 7+ 6√7 )/( 9-7)

=> a+b7 = (16+67)/(2

=> a+b7 = 8 +37.

[ Compare both side , ]

=> So, we find here .

♠ a = 8

b = 3.

_____________________

#ANSWERWITHQUALITY & #BAL

_____________________

Answered by Anonymous
6

Question:

  • If  \frac{3 +  \sqrt{7} }{3 -  \sqrt{7} }  = a + b \sqrt{7} , then find the value of a and b.

Answer:

\large\boxed{\sf{a=8\: ,\:b=3}}

Step-by-step explanation:

It's given that,

  \dfrac{3 +  \sqrt{7} }{3 -  \sqrt{7} }  = a + b \sqrt{7}

Rationalisation of Denominator,

  \sf{=  >  \dfrac{3 +  \sqrt{7} }{3 -  \sqrt{7} }  \times  \frac{3 +  \sqrt{7} }{3 +  \sqrt{7} }  = a + b \sqrt{7} } \\  \\  \sf{ =  >   \dfrac{{(3 +   \sqrt{7} )}^{2} }{ {(3)}^{2}  -  {( \sqrt{7} )}^{2} } = a + b \sqrt{7}  }\\  \\ \sf{  =  >  \frac{9 + 7 + 6 \sqrt{7} }{9 - 7}  = a + b \sqrt{7}  }\\  \\ \sf{  =  >  \frac{16 + 6 \sqrt{7} }{2}  = a + b \sqrt{7}}  \\  \\   \sf{=  > 8 + 3 \sqrt{7}  = a + b \sqrt{7} }

Comparing the coefficient on both sides,

  • a = 8
  • b = 3
Similar questions