Solve it
If ( x + iy)⅓ = a + ib ( x , y , a , b £ R )
Show that x/a + y/b = 4 (a² - b²)
Answers
Answered by
50
Heya!!
_______________________________________________________________
Given that ,
=> x + iy = a³ + 3a²ib + 3a i²b² + i³b³
=> x + iy = ( a³ - 3ab²) + i (3a²b - b³)
L.H.S = R.H.S
____________________________________________________________
_______________________________________________________________
Given that ,
=> x + iy = a³ + 3a²ib + 3a i²b² + i³b³
=> x + iy = ( a³ - 3ab²) + i (3a²b - b³)
L.H.S = R.H.S
____________________________________________________________
Hritu76:
Thank u so much yrr
Answered by
1
Hello!
( x + iy)^1/3 = (a + ib)
So cubing both the sides
( x + iy) = (a+ib)³
( x + iy) = a³ + i³b³ + 3a²ib + 3ai²b²
Then You can separate the real and imaginary parts
x = a³ - 3ab²
y = b³ + 3a²b
Put the values x/a + y/b
= 4a² - 4b²
= 4 (a² - b²)
Hope it the the correct answer friend.☺
Hope it is helpful
Similar questions