Math, asked by Anonymous, 11 months ago

Solve it in a shortest possible way.​

Attachments:

Answers

Answered by Anonymous
1

Answer:

\large\boxed{\sf{I=  { \tan }^{ - 1} ( \sin x) +  \frac{1}{2}  ln(1 +  { \sin}^{2} x)  -  ln(1 -  \sin x)+C }}

Step-by-step explanation:

Given

\displaystyle \int  \frac{2 \cos(x) }{(1 -  \sin x)(2 -  { \cos}^{2}x)  } dx \\  \\  = \displaystyle \int  \frac{2 \cos(x) }{(1 -  \sin x) (1 +  { \sin }^{2}x) } dx

To solve it further, let's assume that

 \sin(x)  = t \\  \\  =  >  \cos(x) dx = dt

Therefore , we get,

\displaystyle \int  \frac{2}{(1 - t)(1  +  {t}^{2} )} dt

Now, it will be solved by integrating partial fraction.

  • \bold\red{Refer\: to \:the\: attachment .}

Thus, we get the answer as :

I=  \purple{{ \tan }^{ - 1} ( \sin x) +  \frac{1}{2}  ln(1 +  { \sin}^{2} x)  -  ln(1 -  \sin x)+C }

Attachments:
Similar questions