solve it in simple way..
integration!!
Attachments:
Answers
Answered by
17
Hi,
Here is your answer !
____________________________
Let , ɪ = ʃ tan⁴x dx
= ʃ tan²x . tan²x dx
= ʃ ( sec²x − 1 ) . tan²x dx
= ʃ ( sec²x . tan²x − tan²x ) dx
= ʃ ( sec²x . tan²x ) dx − ʃ tan²x dx
= ɪ₁ − ɪ₂ ( say )
Now ,
ɪ₁ = ʃ ( sec²x . tan²x ) dx
Let t = tanx then dt = sec²x dx
→ ɪ₁ = ʃ t² dt
→ ɪ₁ = t³/3 + C₁
→ ɪ₁ = tan³x/3 + C₁
And ,
ɪ₂ = ʃ tan²x dx = ʃ (sec²x − 1) dx
ɪ₂ = ʃ sec²x dx − ʃ 1 dx
ɪ₂ = tanx − x + C₂
Now,
ɪ = ɪ₁ − ɪ₂
ɪ = tan³x/3 + C₁ − tanx + x − C₂
ɪ = tan³x/3 − tanx + x + C
( Where, C = C₁ − C₂ )
Hence,
ʃ tan⁴x dx = tan³x / 3 − tanx + x + C
Here is your answer !
____________________________
Let , ɪ = ʃ tan⁴x dx
= ʃ tan²x . tan²x dx
= ʃ ( sec²x − 1 ) . tan²x dx
= ʃ ( sec²x . tan²x − tan²x ) dx
= ʃ ( sec²x . tan²x ) dx − ʃ tan²x dx
= ɪ₁ − ɪ₂ ( say )
Now ,
ɪ₁ = ʃ ( sec²x . tan²x ) dx
Let t = tanx then dt = sec²x dx
→ ɪ₁ = ʃ t² dt
→ ɪ₁ = t³/3 + C₁
→ ɪ₁ = tan³x/3 + C₁
And ,
ɪ₂ = ʃ tan²x dx = ʃ (sec²x − 1) dx
ɪ₂ = ʃ sec²x dx − ʃ 1 dx
ɪ₂ = tanx − x + C₂
Now,
ɪ = ɪ₁ − ɪ₂
ɪ = tan³x/3 + C₁ − tanx + x − C₂
ɪ = tan³x/3 − tanx + x + C
( Where, C = C₁ − C₂ )
Hence,
ʃ tan⁴x dx = tan³x / 3 − tanx + x + C
Answered by
9
The answer is explained below..
Hope it helps!
Hope it helps!
Attachments:
siddhartharao77:
:-)
Similar questions
Science,
7 months ago
Hindi,
7 months ago
Environmental Sciences,
1 year ago
English,
1 year ago
Science,
1 year ago