Math, asked by ZiaAzhar89, 1 year ago

solve it in sort way its urgent

Attachments:

Answers

Answered by Deepsbhargav
19
 = > \frac{ {( {a}^{2} - {b}^{2} ) }^{3} + {( {b}^{2} - {c}^{2}) }^{3} + {( {c}^{2} - {a}^{2}) }^{3} }{(a - b)(b - c)(c - a)(a + b)(b + c)(c + a)} \\ \\ = > \frac{ {( {a}^{2} - {b}^{2} ) }^{3} + {( {b}^{2} - {c}^{2} ) }^{3} + {( {c}^{2} - {a}^{2}) }^{3} }{( {a}^{2} - {b}^{2})( {b}^{2} - {c}^{2} )( {c}^{2} - {a}^{2} )}
__________________________________

LET'S :-

=> a² - b² = x

=> b² - c² = y

=> c² - a² = z
_______________

THEN,

 = > \frac{ {x}^{3} + {y}^{3} + {z}^{3} }{x.y.z}
__________________________________

here,

=> x + y + z = a²-b²+b²-c²+c²-a²

=> x + y + z = 0 ________[Eq(1)]
___________________________________

Algebraic Identity :-

 = > {( \alpha + \beta + \gamma )}^{3} = { \alpha }^{3} + { \beta }^{3} + { \gamma }^{3} + ( \alpha + \beta + \gamma )( \alpha \beta + \beta \gamma + \gamma \alpha ) \\ \\ = > { \alpha }^{3} + { \beta }^{3} + { \gamma }^{3} = {( \alpha + \beta + \gamma )}^{3} - ( \alpha + \beta + \gamma )( \alpha \beta + \beta \gamma + \gamma \alpha )
___________________________________

THEN,

 = > \frac{ {x}^{3} + {y}^{3} + {z}^{3} }{x.y.z} \\ \\ = > \frac{ {(x + y + z)}^{3} - (x + y + z)(xy + yz + zx)}{x.y.z} \\ \\ = > \frac{ {0}^{3} - 0 \times (xy + yz + zx)}{xyz} \\ \\ = > 0
____________[ANSWER]

======================================

_-_-_-_☆BE \: \: \: \: BRAINLY☆_-_-_-_

PrAbHuDuTt11: Hello bro .... !!!
PrAbHuDuTt11: please respond
Deepsbhargav: hii
Deepsbhargav: yes bro
Answered by HarishAS
8

Hey friend, Harish here.


Please refer to the image attached for the answer.

_________________________________________________


Hope my answer is helpful to you.

Attachments:
Similar questions