Math, asked by rohithkrhoypuc1, 16 days ago

Solve it.


Irrevelent answers will be deleted. ​

Attachments:

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given matrix is

\rm :\longmapsto\:A = \bigg[ \begin{matrix}2&1 \\ 1&1 \end{matrix} \bigg]

Using Elementary Row Transformation Method, we have

\rm :\longmapsto\:A = IA

\rm :\longmapsto\:\bigg[ \begin{matrix}2&1 \\ 1&1 \end{matrix} \bigg] = \bigg[ \begin{matrix}1&0 \\ 0&1 \end{matrix} \bigg]A

\red{\rm :\longmapsto\:OP \: R_1 \:  \leftrightarrow \: R_2}

\rm :\longmapsto\:\bigg[ \begin{matrix}1&1 \\ 2&1 \end{matrix} \bigg] = \bigg[ \begin{matrix}0&1 \\ 1&0 \end{matrix} \bigg]A

\red{\rm :\longmapsto\:OP \: R_2 \:  \rightarrow \: R_2 - 2R_1}

\rm :\longmapsto\:\bigg[ \begin{matrix}1&1 \\ 0& - 1 \end{matrix} \bigg] = \bigg[ \begin{matrix}0&1 \\ 1& - 2 \end{matrix} \bigg]A

\red{\rm :\longmapsto\:OP \: R_2 \:  \rightarrow \: -  \:  R_2}

\rm :\longmapsto\:\bigg[ \begin{matrix}1&1 \\ 0&1 \end{matrix} \bigg] = \bigg[ \begin{matrix}0&1 \\  - 1& 2 \end{matrix} \bigg]A

\red{\rm :\longmapsto\:OP \: R_1 \:  \rightarrow \:R_1 \:  -  \:  R_2}

\rm :\longmapsto\:\bigg[ \begin{matrix}1&0 \\ 0&1 \end{matrix} \bigg] = \bigg[ \begin{matrix}1& - 1 \\  - 1& 2 \end{matrix} \bigg]A

Since, we know

 \red{\boxed{\tt{  {A \: A}^{ - 1} \:  = I \: }}}

\bf\implies \: {A}^{ - 1} = \bigg[ \begin{matrix}1& - 1 \\  - 1&2 \end{matrix} \bigg]

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn More :-

If A and R are square matrix of order n, then

\boxed{\tt{  {(AR)}^{ - 1} =  {R}^{ - 1} {A}^{ - 1} \: }}

\boxed{\tt{  | {A}^{ - 1} |  =  \frac{1}{ |A| }  \: }}

\boxed{\tt{  |A'|  =  |A| \: }}

\boxed{\tt{  |kA| =  {k}^{n} |A|  \: }}

\boxed{\tt{  |adj \: A|  =  { |A| }^{n - 1} \: }}

Similar questions