Math, asked by dheerajdola03, 4 months ago

Solve it.
It is from Limits class 11​

Attachments:

Answers

Answered by mathdude500
3

\large\underline\purple{\bold{Solution :-  }}

\tt \:\lim_{y\to 0}\dfrac{ \sqrt{1 +  \sqrt{1 +  {y}^{4} } } \:   -  \:  \sqrt{2} }{ {y}^{4} }

☆ If we substitute directly y = 0, we get indeterminant form

\tt \:\lim_{y\to 0}\dfrac{ \sqrt{1 +  \sqrt{1 +  {y}^{4} } } \:   -  \:  \sqrt{2} }{ {y}^{4} }  \times \dfrac{ \sqrt{1 +  \sqrt{1 +  {y}^{4} } } +  \sqrt{2}  }{ \sqrt{1 +  \sqrt{1 +  {y}^{4} } }  +  \sqrt{2} }

\tt \: = \lim_{y\to 0}\dfrac{1 +  \sqrt{1 +  {y}^{4} }  - 2}{ {y}^{4} \bigg( \sqrt{1 +  \sqrt{1 +  {y}^{4} } } +  \sqrt{2}   \bigg)}

\tt \: = \lim_{y\to 0}\dfrac{ \sqrt{1 +  {y}^{4} } - 1 }{{y}^{4} \bigg( \sqrt{1 +  \sqrt{1 +  {y}^{4} } } +  \sqrt{2}   \bigg)}

\tt \: = \lim_{y\to 0}\dfrac{ \sqrt{1 +  {y}^{4} }  - 1}{{y}^{4} \bigg( \sqrt{1 +  \sqrt{1 +  {y}^{4} } } +  \sqrt{2}   \bigg)}  \times \dfrac{ \sqrt{1 +  {y}^{4} } + 1 }{ \sqrt{1 +  {y}^{4} }  + 1}

\tt \: = \lim_{y\to 0}\dfrac{ \cancel1 +  {y}^{4}  -  \cancel1}{{y}^{4} \bigg( \sqrt{1 +  \sqrt{1 +  {y}^{4} } } +  \sqrt{2}   \bigg)\bigg( \sqrt{1 +  {y}^{4} } + 1  \bigg)}

\tt \: = \lim_{y\to 0}\dfrac{ \cancel{ {y}^{4} }}{ \cancel{{y}^{4}} \bigg( \sqrt{1 +  \sqrt{1 +  {y}^{4} } } +  \sqrt{2}   \bigg)\bigg( \sqrt{1 +  {y}^{4} }   + 1\bigg)}

\tt \:   = \dfrac{1}{2 \sqrt{2}(2) }

\tt \:   = \dfrac{1}{4 \sqrt{2} }  \times \dfrac{ \sqrt{2} }{ \sqrt{2} }

\tt \:   = \dfrac{ \sqrt{2} }{8}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions