Math, asked by kamalhajare543, 10 hours ago

Solve it.

Jasvindar don't waste points
only post 5 point question ​

Attachments:

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\tt{\displaystyle\lim_{x\to1^{-}}\,\dfrac{\sqrt{\pi}-\sqrt{2\,sin^{-1}(x)}}{\sqrt{1-x}}}

\tt{=\displaystyle\lim_{h\to0}\,\dfrac{\sqrt{\pi}-\sqrt{2\,sin^{-1}(1-h)}}{\sqrt{1-(1-h)}}}

\tt{=\displaystyle\lim_{h\to0}\,\dfrac{\sqrt{\pi}-\sqrt{2\,sin^{-1}(1-h)}}{\sqrt{h}}}

\tt{=\displaystyle\lim_{h\to0}\,\dfrac{\left(\sqrt{\pi}-\sqrt{2\,sin^{-1}(1-h)}\right)\left(\sqrt{\pi}+\sqrt{2\,sin^{-1}(1-h)}\right)}{\sqrt{h}\cdot\,\left(\sqrt{\pi}+\sqrt{2\,sin^{-1}(1-h)}\right)}}

\tt{=\displaystyle\lim_{h\to0}\,\dfrac{\pi-2\,sin^{-1}(1-h)}{\sqrt{h}\cdot\,\left(\sqrt{\pi}+\sqrt{2\,sin^{-1}(1-h)}\right)}}

\tt{=\displaystyle\lim_{h\to0}\,\dfrac{2\left\{\dfrac{\pi}{2}-\,sin^{-1}(1-h)\right\}}{\sqrt{h}\cdot\,\left(\sqrt{\pi}+\sqrt{2\,sin^{-1}(1-h)}\right)}}

\tt{=\displaystyle\lim_{h\to0}\,\dfrac{2\,cos^{-1}(1-h)}{\sqrt{h}\cdot\,\left(\sqrt{\pi}+\sqrt{2\,sin^{-1}(1-h)}\right)}}

\tt{=\displaystyle\lim_{h\to0}\,\dfrac{2\,cos^{-1}(1-h)}{\sqrt{h}}\cdot\,\lim_{h\to0}\dfrac{1}{\sqrt{\pi}+\sqrt{2\,sin^{-1}(1-h)}}}

\tt{=2\,\displaystyle\lim_{h\to0}\,\dfrac{cos^{-1}(1-h)}{\sqrt{h}}\cdot\,\dfrac{1}{\sqrt{\pi}+\sqrt{2\,sin^{-1}(1-0)}}}

\tt{=2\,\displaystyle\lim_{h\to0}\,\dfrac{cos^{-1}(1-h)}{\sqrt{h}}\cdot\,\dfrac{1}{\sqrt{\pi}+\sqrt{2\,sin^{-1}(1)}}}

\tt{=2\,\displaystyle\lim_{h\to0}\,\dfrac{cos^{-1}(1-h)}{\sqrt{h}}\cdot\,\dfrac{1}{\sqrt{\pi}+\sqrt{\pi}}}

\tt{=2\,\displaystyle\lim_{h\to0}\,\dfrac{cos^{-1}(1-h)}{\sqrt{h}}\cdot\,\dfrac{1}{2\sqrt{\pi}}}

\tt{=\dfrac{1}{\sqrt{\pi}}\,\displaystyle\lim_{h\to0}\,\dfrac{cos^{-1}(1-h)}{\sqrt{h}}}

Using l'hospital's rule,

\tt{=\dfrac{1}{\sqrt{\pi}}\,\displaystyle\lim_{h\to0}\,\dfrac{\dfrac{-1}{\sqrt{1-(1-h)^2}}}{\dfrac{1}{2\sqrt{h}}}}

\tt{=\dfrac{1}{\sqrt{\pi}}\,\displaystyle\lim_{h\to0}\,\dfrac{-2\sqrt{h}}{\sqrt{1-(1-h)^2}}}

\tt{=\dfrac{1}{\sqrt{\pi}}\,\displaystyle\lim_{h\to0}\,\dfrac{-2\sqrt{h}}{\sqrt{1-(1-2h+h^2)}}}

\tt{=\dfrac{1}{\sqrt{\pi}}\,\displaystyle\lim_{h\to0}\,\dfrac{-2\sqrt{h}}{\sqrt{1-1+2h-h^2}}}

\tt{=\dfrac{1}{\sqrt{\pi}}\,\displaystyle\lim_{h\to0}\,\dfrac{-2\sqrt{h}}{\sqrt{2h-h^2}}}

\tt{=\dfrac{1}{\sqrt{\pi}}\,\displaystyle\lim_{h\to0}\,\dfrac{-2\sqrt{h}}{\sqrt{h}\,\sqrt{2-h}}}

\tt{=\dfrac{1}{\sqrt{\pi}}\,\displaystyle\lim_{h\to0}\,\dfrac{-2}{\sqrt{2-h}}}

\tt{=\dfrac{1}{\sqrt{\pi}}\cdot\dfrac{-2}{\sqrt{2-0}}}

\tt{=-\dfrac{1}{\sqrt{\pi}}\cdot\dfrac{2}{\sqrt{2}}}

\tt{=-\dfrac{1}{\sqrt{\pi}}\cdot\sqrt{2}}

\tt{=-\sqrt{\dfrac{2}{\pi}}}

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\lim_{x \to 1^-} \frac{ \sqrt{\pi}  -  \sqrt{ {2sin}^{ - 1}x } }{ \sqrt{1 - x} }

On substituting,

\boxed{ \tt{ \: x = 1 - h, \:  \: as \: x \to \: 1 \:  \: so \: h \:  \to \: 0 \: }}

So, we get

\rm \:  =  \: \displaystyle\lim_{h \to 0} \frac{ \sqrt{\pi}  -  \sqrt{ {2sin}^{ - 1}(1 - h)} }{ \sqrt{1 - (1 - h)} }

\rm \:  =  \: \displaystyle\lim_{h \to 0} \frac{ \sqrt{\pi}  -  \sqrt{ {2sin}^{ - 1}(1 - h)} }{ \sqrt{1 - 1  + h} }

\rm \:  =  \: \displaystyle\lim_{h \to 0} \frac{ \sqrt{\pi}  -  \sqrt{ {2sin}^{ - 1}(1 - h)} }{ \sqrt{h} }

Now, Using L - Hospital Rule, we get

\rm \:  =  \: \displaystyle\lim_{h \to 0} \frac{\dfrac{d}{dh} \sqrt{\pi}  - \dfrac{d}{dh} \sqrt{ {2sin}^{ - 1}(1 - h)} }{ \dfrac{d}{dh}\sqrt{h} }

\rm \:  =  \: \displaystyle\lim_{h \to 0} \frac{0 - \dfrac{1}{2 \sqrt{2 {sin}^{ - 1} (1 - h)}}\dfrac{d}{dh}2 {sin}^{ - 1}(1 - h) }{\dfrac{1}{2 \sqrt{h} } }

\rm \:  =  - 2\displaystyle\lim_{h \to 0} \frac{\dfrac{1}{\sqrt{2 {sin}^{ - 1} (1 - h)}}\dfrac{1}{ \sqrt{1 -  {(1 - h)}^{2}} }( - 1) }{\dfrac{1}{\sqrt{h} } }

\rm \:  =  \: 2\displaystyle\lim_{h \to 0} \frac{ \sqrt{h} }{ \sqrt{2 {sin}^{ - 1}(1 - h) }  \sqrt{1 - (1 +  {h}^{2} - 2h) } }

\rm \:  =  \: 2\displaystyle\lim_{h \to 0} \frac{ \sqrt{h} }{ \sqrt{2 {sin}^{ - 1}(1 - h) }  \sqrt{1 - 1 - {h}^{2}  + 2h } }

\rm \:  =  \: 2\displaystyle\lim_{h \to 0} \frac{ \sqrt{h} }{ \sqrt{2 {sin}^{ - 1}(1 - h) }  \sqrt{ - {h}^{2}  + 2h } }

\rm \:  =  \: 2\displaystyle\lim_{h \to 0} \frac{ \sqrt{h} }{ \sqrt{2 {sin}^{ - 1}(1 - h) }  \sqrt{h(2 - h)} }

\rm \:  =  \: 2\displaystyle\lim_{h \to 0} \frac{ \sqrt{h} }{ \sqrt{2 {sin}^{ - 1}(1 - h) } \sqrt{h}   \sqrt{(2 - h)} }

\rm \:  =  \: 2\displaystyle\lim_{h \to 0} \frac{ 1 }{ \sqrt{2 {sin}^{ - 1}(1 - h) }   \sqrt{(2 - h)} }

\rm \:  =  \: \dfrac{2}{ \sqrt{2} \times  \sqrt{2}  \times  \sqrt{ {sin}^{ - 1} 1}  }

\rm \:  =  \: \dfrac{1}{\sqrt{\dfrac{\pi}{2} }}

\rm \:  =  \:  \sqrt{\dfrac{2}{\pi} }

Hence,

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 1^-} \frac{ \sqrt{\pi}  -  \sqrt{ {2sin}^{ - 1}x } }{ \sqrt{1 - x} }  =  \sqrt{\dfrac{2}{\pi} } \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions