Math, asked by Anonymous, 1 year ago

solve it mates...........

Attachments:

Answers

Answered by sg2544
2
hello mate......!!!!


》 given.......


log( \frac{x + y}{5} ) =  \frac{1}{2} (logx + logy) \\  \\we \: know \: .... \\  log(x  y )= logx + logy\\  \\  log( \frac{x + y}{5} ) =  \frac{1}{2} (logx  y) \\  \\ log( \frac{x + y}{5} ) = log(xy) {}^{ \frac{1}{2} }  \\  \\ then...log \: will \: be \: remove \: both \: sides... \\  \\ ( \frac{x + y}{5}  )=( xy) {}^{ \frac{1}{2} }  \\  \\ apply \: both \: side \: squre... \\  \\ ( \frac{x + y}{5} ) {}^{2}  = xy \\  \\ (x + y) {}^{2}  = 25xy \\  \\ x {}^{2}  + y {}^{2}  + 2xy = 25xy \\  \\ x { }^{2}  + y {}^{2}  = 23xy \\  \\  \\hence \: proved \: ur \: condtion.... \\  \\ hope \: it \: helps \: u \: dear.....
Similar questions