Math, asked by sumit22bera, 4 months ago

Solve it.....
Mathematics question.​

Attachments:

Answers

Answered by pulakmath007
3

SOLUTION

GIVEN

 \sf{a = x \:   {y}^{p - 1} ,b = x \:   {y}^{q - 1} ,  c = x \:   {y}^{r - 1} }

TO PROVE

 \sf{ {a}^{q - r}  \:  {b}^{r - p}   \: {c}^{p - q} = 1 }

PROOF

LHS

 \sf{ =  {a}^{q - r}   \times   {b}^{r - p}    \times  {c}^{p - q}  }

 \sf{ =  {(x \:  {y}^{p - 1} )}^{q - r}   \times   {(x \:  {y}^{q- 1} )}^{r - p}    \times  {(x \:  {y}^{r- 1} )}^{p - q}  }

 \sf{ =   {x}^{q - r + r - p + p - q}  \times  {y}^{(p - 1)(q - r) + (q - 1)(r - p) + (r - 1)(p - q)} }

 \sf{ =   {x}^{0}  \times  {y}^{(pq - pr - q  + r) + (qr - pq - r  + p) + ( pr -q r- p  + q)} }

 \sf{ =   {x}^{0}  \times  {y}^{0} }

 =  1\times 1

 = 1

= RHS

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If 2x× 4x=(8)1/3 × (32)1/5 ,

then find the value of x

https://brainly.in/question/14155738

2. Evaluate: 7 x 7^1/2 x 7^1/4 x 7^1/8

..to infinity

https://brainly.in/question/20308189

Answered by sonuvuce
0

The proof is given below:

Given:

a=xy^{p-1}

b=xy^{q-1}

c=xy^{r-1}

To show that:

a^{q-r}b^{r-p}c^{p-q}=1

Solution:

a=xy^{p-1}

\implies a^{q-r}=x^{q-r}y^{(p-1)(q-r)}

b=xy^{q-1}

\implies b^{r-p}=x^{r-p}y^{(q-1)(r-p)}

c=xy^{r-1}

\implies c^{p-q}=x^{p-q}y^{(r-1)(p-q)}

Now,

a^{q-r}b^{r-p}c^{p-q}

=x^{q-r}y^{(p-1)(q-r)}\times x^{r-p}y^{(q-1)(r-p)}\times x^{p-q}y^{(r-1)(p-q)}

=x^{q-r+r-p+p-q}y^{(p-1)(q-r)+(q-1)(r-p)+(r-1)(p-q)}

=x^0y^{pq-pr-q+r+qr-pq-r+p+pr-qr-p+q}

=x^0y^0

=1            (\because a^0=1)

Hope this answer is helpful.

Know More:

Q: If (a-x) : (b-x) be duplicate ratio if a : b show that 1/x = 1/a + 1/b

Click Here: https://brainly.in/question/6861642

Similar questions