Math, asked by amusi, 8 months ago

solve it.......,mm.........................​

Attachments:

Answers

Answered by shomekeyaroy79
2

I) r≈1960.79mm

ii) A≈1.21×107

iii) A≈4.83×107

Answered by Intelligentcat
95

Answer:

\Large{\boxed{\underline{\overline{\mathfrak{\star \: Correct \: QuEsTiOn :- \: \star}}}}}

4)The circumference of a circle is 1232 cm

Calculate

the radius of the circle in cm

the area of the circle to the nearest cm^2?

Find the effect on the area of the circle of the radius is doubled.

\huge\underline{\overline{\mid{\bold{\pink{ANSWER-}}\mid}}}

\Large{\underline{\underline{\bf{GiVen:-}}}}

Circumference/perimeter of the circle = 1232 cm

\Large{\underline{\underline{\bf{To \: FinD:-}}}}

Radius Area of circle.

Effect on area when radius is doubled .

❥ How to Solve?

The above is very simple, just apply formula and get solution type question. We just need to know the basic formulae like perimeter of circle, area of circle.

Here, r = radius of the circle

\large{\boxed{\red{\rm{Perimeter \:of \:circle = 2\pi r}}}}

\large{\boxed{\purple{\rm{Area\:of \:circle =\pi {r}^{2}}}}}

By using these formula, let's solve this question.

\Large{\underline{\underline{\bf{SoLuTion:-}}}}

(i)Given, Circumference = 1232 cm

So, we can find the radius of the circle, as we know the circumference and value of pi.

By using formula,

 \large{ \rm{ \longrightarrow \: 2\pi  r = 1232 \: cm}} \\  \\  \large{ \rm{ \longrightarrow \: 2 \times  \frac{22}{7} \times r = 1232 \: cm}} \\  \\   \large{ \rm{ \longrightarrow \: r =   \cancel{\frac{1232 \times 7}{2 \times 22} \: cm}}} \\  \\  \large{ \rm{ \longrightarrow \: r =  \boxed{ \rm{ \blue{196 \: cm}}}}}

(ii) Now as we have got our radius, let's find out the area of circle by applying formula,

By using formula,

 \large{ \rm{ \longrightarrow \: Area \: of \: circle = \pi  {r}^{2}}} \\  \\  \large{ \rm{ \longrightarrow \: Area \: of \: circle = \pi(196) {}^{2} \:  {cm}^{2} }} \\  \\    \large{ \rm{ \longrightarrow \: Area \: of \: circle =  \frac{22}{7} \times 196 \times 196 \:  {cm}^{2}  }} \\  \\  \large{ \rm{ \longrightarrow \: Area \: of \: circle = 22 \times 28 \times 196 \:  {cm}^{2}}} \\  \\   \large{ \rm{ \longrightarrow \: Area \: of \: circle =  \boxed{ \rm{ \blue{120736 \:  {cm}^{2} }}}}}

Let original radius be r

 \large{ \rm{ \longrightarrow \: Area \: of \: circle = \pi  {r}^{2}}}

And, final radius = 2r (Radius getting doubled)

 \large{ \rm{ \longrightarrow \: New \: area \: of \: circle = \pi(2r) {}^{2} }} \\  \\  \large{ \rm{ \longrightarrow \: New \: area \: of \: circle = 4\pi {r}^{2}}}

So, Area becomes 4 times of the original, Although you have not mentioned, Still I am finding the % change.

% change in area,

 \Large{ \rm{ \longrightarrow  \frac{New \: area - Original \: area}{Original \: area} \times 100}}

So, by using formula,

\large{ \rm{ \longrightarrow \: \% \: change \: in \: area =  \frac{4\pi  {r}^{2}  - \pi  {r}^{2} }{\pi  {r}^{2} } \times 100}} \\  \\  \large{ \rm{ \longrightarrow \: \% \: change \: in \: area =  \frac{3\pi {r}^{2} }{\pi {r}^{2} }  \times 100\: }} \\  \\   \large{ \rm{ \longrightarrow \: \% \: change \: in \: area   =  \boxed{ \rm{ \blue{300\%}}}}}

The area increase by 300 % when radius is doubled.

\mathfrak{\huge{\purple{\underline{\underline{Hence}}}}}

Hope it helps uhh

Similar questions