Math, asked by anushkasharma8840, 9 months ago


☆☞ solve it
No spam ✖✖✖✖✖✖✖✖​

Attachments:

Answers

Answered by Anonymous
49

  \huge\bold\red{Answer}

Given :-

➡Tan A = a Tan B

➡Tan B =  \frac{1}{b}

➡TanA

➡cot B = a/ Tan A

( Equation 1 )

➡sin A = b  \: sin B

➡sin B  =  \frac{1}{b}  b sin A

➡cosec B = b / Sin A

( Equation 2 )

We know that , cosec ² B - cot² B = 1

From 1 and 2 Equation :-

↪ \frac{ {b}^{2} } { \sin ^{2} A}   -  \frac{ {a}^{2} }{ { \tan }^{2}A}  = 1

↪ \frac{ {b}^{2} }{ \sin ^{2} (A) }   -  \frac{ {a}^{2}  \cos ^{2} (A ) }{ \sin ^{2} (A) }  = 1

[ Where  = \tan(A)   =  \frac{ \sin(A) }{ \cos(A) } ]

↪ \frac{  {b}^{2} -  {a}^{2} \cos ^{2} (A)    }{ \sin ^{2} (A) }  = 1

 =  {b}^{2}   - {a}^{2}  \cos ^{2} (A)  =  \sin ^{2} (A)

 =  {b}^{2}   - {a}^{2}  \cos ^{2} (A)  =  1 - \cos ^{2} (A)

 =  {b}^{2}  - 1 = ( {a}^{2}  - 1) \cos  ^{2} A =  \frac{ {b}^{2}  - 1}{  {a}^{2}  - 1 }  =  \cos ^{2} (A)

Hence Proved ♠♠

Answered by mathsqueen11
3

Answer:

Given :-

➡Tan A = a Tan B➡TanA=aTanB

➡Tan B = \frac{1}{b}➡TanB=

b

1

➡TanA➡TanA

➡cot B = a/ Tan A➡cotB=a/TanA

( Equation 1 )

➡sin A = b \: sin B➡sinA=bsinB

➡sin B = \frac{1}{b} b sin A➡sinB=

b

1

bsinA

➡cosec B = b / Sin A➡cosecB=b/SinA

( Equation 2 )

We know that , cosec ² B - cot² B = 1

From 1 and 2 Equation :-

↪ \frac{ {b}^{2} } { \sin ^{2} A} - \frac{ {a}^{2} }{ { \tan }^{2}A} = 1↪

sin

2

A

b

2

tan

2

A

a

2

=1

↪ \frac{ {b}^{2} }{ \sin ^{2} (A) } - \frac{ {a}^{2} \cos ^{2} (A ) }{ \sin ^{2} (A) } = 1↪

sin

2

(A)

b

2

sin

2

(A)

a

2

cos

2

(A)

=1

[ Where = \tan(A) = \frac{ \sin(A) }{ \cos(A) } ][Where=tan(A)=

cos(A)

sin(A)

]

↪ \frac{ {b}^{2} - {a}^{2} \cos ^{2} (A) }{ \sin ^{2} (A) } = 1↪

sin

2

(A)

b

2

−a

2

cos

2

(A)

=1

= {b}^{2} - {a}^{2} \cos ^{2} (A) = \sin ^{2} (A)=b

2

−a

2

cos

2

(A)=sin

2

(A)

= {b}^{2} - {a}^{2} \cos ^{2} (A) = 1 - \cos ^{2} (A)=b

2

−a

2

cos

2

(A)=1−cos

2

(A)

= {b}^{2} - 1 = ( {a}^{2} - 1) \cos ^{2} A = \frac{ {b}^{2} - 1}{ {a}^{2} - 1 } = \cos ^{2} (A)=b

2

−1=(a

2

−1)cos

2

A=

a

2

−1

b

2

−1

=cos

2

(A)

Hence Proved ♠♠

Similar questions