☆☞ solve it
No spam ✖✖✖✖✖✖✖✖
Answers
Given :-
( Equation 1 )
( Equation 2 )
We know that , cosec ² B - cot² B = 1
From 1 and 2 Equation :-
Hence Proved ♠♠
Answer:
Given :-
➡Tan A = a Tan B➡TanA=aTanB
➡Tan B = \frac{1}{b}➡TanB=
b
1
➡TanA➡TanA
➡cot B = a/ Tan A➡cotB=a/TanA
( Equation 1 )
➡sin A = b \: sin B➡sinA=bsinB
➡sin B = \frac{1}{b} b sin A➡sinB=
b
1
bsinA
➡cosec B = b / Sin A➡cosecB=b/SinA
( Equation 2 )
We know that , cosec ² B - cot² B = 1
From 1 and 2 Equation :-
↪ \frac{ {b}^{2} } { \sin ^{2} A} - \frac{ {a}^{2} }{ { \tan }^{2}A} = 1↪
sin
2
A
b
2
−
tan
2
A
a
2
=1
↪ \frac{ {b}^{2} }{ \sin ^{2} (A) } - \frac{ {a}^{2} \cos ^{2} (A ) }{ \sin ^{2} (A) } = 1↪
sin
2
(A)
b
2
−
sin
2
(A)
a
2
cos
2
(A)
=1
[ Where = \tan(A) = \frac{ \sin(A) }{ \cos(A) } ][Where=tan(A)=
cos(A)
sin(A)
]
↪ \frac{ {b}^{2} - {a}^{2} \cos ^{2} (A) }{ \sin ^{2} (A) } = 1↪
sin
2
(A)
b
2
−a
2
cos
2
(A)
=1
= {b}^{2} - {a}^{2} \cos ^{2} (A) = \sin ^{2} (A)=b
2
−a
2
cos
2
(A)=sin
2
(A)
= {b}^{2} - {a}^{2} \cos ^{2} (A) = 1 - \cos ^{2} (A)=b
2
−a
2
cos
2
(A)=1−cos
2
(A)
= {b}^{2} - 1 = ( {a}^{2} - 1) \cos ^{2} A = \frac{ {b}^{2} - 1}{ {a}^{2} - 1 } = \cos ^{2} (A)=b
2
−1=(a
2
−1)cos
2
A=
a
2
−1
b
2
−1
=cos
2
(A)
Hence Proved ♠♠