Math, asked by nirlipt2018, 1 year ago

solve it. no span. ​

Attachments:

Answers

Answered by Anonymous
3

hey !!

let

theta =x

given here

3 tan x =3 sin x

find here

sin²x-cos²x=?

_________________

Solution :-

√3 tan x =3 sin x

=>3/3= sin x /tan x

=>3/3= cos x

=>cos x = 1/3

_________________

now,

1/cos x= sec x

sec x =3

_________________________

sin x= [1- cos²x]

= [1- (1/3)²]

=[1-1/3)

(3-1)/3

=(2/3)

__________________________

so,

sin²x - cos ² x

= ((2/3)² - (1/3)²

= 2/3 -1/3

= 1/3

__________ ________

I hopes its helps u

follow me...!!

@Abhi.

Answered by rakhithakur
0
hey mate here is your solution
hence \:  \sqrt{3}  \tan(theta)  = 3 \sin(theta)
so
 \frac{ \tan(theta) }{sin \: theta}  =  \frac{3}{ \sqrt{3} }  =  \frac{ \sqrt{3}  \times { \sqrt{3} } }{ \sqrt{3} }  =  \sqrt{3}
 \frac{   \frac{\sin(theta)  \: }{ \cos(theta) }  }{ \sin(theta) }  =  \frac{ \sin( theta) }{ \cos(theta) }  \times  \frac{1}{ \sin(theta) }  =  \frac{1}{ \cos(theta) }
cos theta =
 \frac{1}{\sqrt{3}  }
so cos square theta = 1/3
therefore sin square theta = 1-cos2 theta
= 1- 1/3= (3-1)/2
=2/3
so
sin 2 theta - cos 2 theta = 2/3 - 1/3
= 1/3 ans.





for more information email ([email protected])
Similar questions