Math, asked by yoyoyo79, 10 months ago

solve it no wrong ans plz ​

Attachments:

Answers

Answered by Anonymous
2

Answer:

<body bgcolor=pink><marquee direction="up"><font color=purple>

Now, l + b + h = 19 CM.

Given it's diagonal = 5√5 cm.

Diagonal = √ l² + b² + h² = 5√5

125 = l² + b² + h²

Also, T. S. A = 2(lb+bh+hl)

Now, Take l + b + h = 19

Squaring on both sides

(l + b + h) ² = 19²

l² + b ² + h² + 2 ( lb+ bh+hl) = 361

125 + TSA = 361

TSA = 236 cm²

Therefore, T. S. A = 236 cm²

<body bgcolor=pink><marquee direction="down"><font color=black>

30thx On Math Answers +Follow =INBOX

♥Follow meeee♥

Answered by Anonymous
66

Answer:

 \boxed{\sf Surface \ area \ of \ cuboid =236 \:  {cm}^{2}}

Given:

Sum of the length, breadth and depth of a cuboid = 19 cm

Diagonal of cuboid = 5 \sf \sqrt{5} cm

To find:

Surface area of cuboid

Step-by-step explanation:

Let,

Length = l

Breadth = b

Depth = d

So,

 \sf \implies l + b + d = 19

\sf  Diagonal \ of \ cuboid = \sqrt{l^{2} + b^{2} + d^{2}} \\  \\  \sf \implies 5 \sqrt{5}  =  \sqrt{ {l}^{2}  +  {b}^{2}  +  {d}^{2} } \\  \\  \sf \implies {(5 \sqrt{5} )}^{2}  =  {l}^{2}  +  {b}^{2}  +  {d}^{2}  \\  \\  \sf \implies  {l}^{2}  +  {b}^{2}  +  {d}^{2}  = 25 \times 5\\  \\  \sf \implies {l}^{2}  +  {b}^{2}  +  {d}^{2}  = 125 \: cm

 \sf Surface \ area \ of \ cuboid = 2(lb + bd + ld)

As we know,

 \sf (l + b + d)^{2} =  {l}^{2}  +  {b}^{2} +  {d}^{2} +  2(lb + bd + ld)

By substituting respective values of (l + b + d) and (l² + b² + d²) in the above formula we can find surface area of cuboid

 \sf  \implies  \sf (l + b + d)^{2} = ( {l}^{2}  +  {b}^{2} +  {d}^{2} )+  2(lb + bd + ld) \\  \\  \sf  \implies  {(19)}^{2}   = (125) + 2(lb + bd + ld) \\  \\  \sf  \implies 361 = 125 + 2(lb + bd + ld) \\  \\  \sf  \implies 361 - 125 = 2(lb + bd + ld) \\  \\  \sf  \implies 236 =  2(lb + bd + ld) \\  \\ \sf  \implies  2(lb + bd + ld) = 236 \:  {cm}^{2}  \\  \\ \sf  \implies Surface \ area \ of \ cuboid =236 \:  {cm}^{2}

Similar questions