Physics, asked by Nargistiwari, 8 hours ago

Solve it now please:– 3x² - 2√6x + 2 = 0​

Answers

Answered by SƬᏗᏒᏇᏗƦƦᎥᎧƦ
47

Question:

  • \sf{3x {}^{2}  - 2 \sqrt{6} + 2 = 0 }

What we have to calculate:

  • We have to calculate and find out the value of x. Here the values of x would be two as it is a quadratic equation.

Formula we are going to use:

The roots of the equation can be obtained by using this formula,

  •  \red{ \boxed{ \sf{x \:  =  \:   \dfrac{ - b± \sqrt{b {}^{2} - 4ac } }{2a} }}}

Lets solve it:

Here as we can clearly see that b is -2√6 , a is 3 and c is 2.

Substituting the values,

: \longmapsto  \sf{x \:  =  \:  \dfrac{ - ( - 2 \sqrt{6} ) \: ± \: \sqrt{( - 2 \sqrt{6} ) {}^{2} } - 4(3)(2)  }{2(3)} }

We know that two minus signs gives plus (addition)

: \longmapsto  \sf{x \:  =  \:  \dfrac{ - ( - 2 \sqrt{6} ) \: ± \: \sqrt{( - 2 \sqrt{6} ) \times ( - 2 \sqrt{6})  } - 4(3)(2)  }{2(3)} }

: \longmapsto  \sf{x \:  =  \:  \dfrac{ - ( - 2 \sqrt{6} ) \: ± \: \sqrt{( - 2 \sqrt{6} ) \times ( - 2 \sqrt{6})  } - 4 \times 3 \times 2 }{2(3)} }

: \longmapsto  \sf{x \:  =  \:  \dfrac{ - ( - 2 \sqrt{6} ) \: ± \: \sqrt{( - 2 \sqrt{6} ) \times ( - 2 \sqrt{6})  } - 4 \times 3 \times 2 }{2 \times 3} }

: \longmapsto  \sf{x \:  =  \:  \dfrac{2 \sqrt{6} ±  \sqrt{24 - 12 \times 2} }{2 \times 3} }

: \longmapsto  \sf{x \:  =  \:  \dfrac{2 \sqrt{6} ±  \sqrt{24 - 24} }{6} }

: \longmapsto  \sf{x \:  =  \:  \dfrac{2 \sqrt{6} }{6} }

Cancelling it,

: \longmapsto  \sf{x \:  =  \:   \cancel\dfrac{2 \sqrt{6} }{6} }

Now,

: \longmapsto  \sf{x \:  =  \:  \dfrac{2}{ \sqrt{6} }  }

Again we gets,

: \longmapsto \sf{x \:  =  \:  \sqrt{ \dfrac{4}{6} }  }

Cancelling,

: \longmapsto \sf{x \:  =  \:  \sqrt{ \cancel \dfrac {4}{6} }  }

: \longmapsto \: \red{ \boxed{ \sf{x \:  =  \:  \sqrt{  \dfrac{2}{3} }  }}}

  • Hence, value of x is \sf{  \sqrt{ \dfrac{2}{3} } }. Both the values of the quadratic equation would be same.
Similar questions