solve it of u can nd don't solve if u can't
Find the value of m if √3-m is a zero of the polynomial 2x^2-2√3
Answers
Answered by
4
The answer is given below :
The given polynomial is
= 2x² - 2√3
Since, (√3 - m) is a zero of the above polynomial, when the polynomial be satisfied with the value x = (√3 - m), we will get
2(√3 - m)² - 2√3 = 0
⇒ 2(√3 - m)² = 2√3
⇒ (√3 - m)² = √3
⇒ √3 - m = ± {√(√3)}
⇒ m = √3 ± {√(√3)}
Thus, the values of m are
√3 + {√(√3)} and √3 - {√(√3)}.
ANOTHER ANSWER :
The given polynomial is
= 2x² - 2√3
Since, √(3 - m) is a zero of the above polynomial, when the polynomial be satisfied with the value x = √(3 - m), we will get
2{√(3 - m)}² - 2√3 = 0
⇒ 2{√(3 - m)}² = 2√3
⇒ {√(3 - m)}² = √3
⇒ 3 - m = √3
⇒ m = 3 - √3
Thus, the values of m is
(3 - √3).
Thank you for your question.
The given polynomial is
= 2x² - 2√3
Since, (√3 - m) is a zero of the above polynomial, when the polynomial be satisfied with the value x = (√3 - m), we will get
2(√3 - m)² - 2√3 = 0
⇒ 2(√3 - m)² = 2√3
⇒ (√3 - m)² = √3
⇒ √3 - m = ± {√(√3)}
⇒ m = √3 ± {√(√3)}
Thus, the values of m are
√3 + {√(√3)} and √3 - {√(√3)}.
ANOTHER ANSWER :
The given polynomial is
= 2x² - 2√3
Since, √(3 - m) is a zero of the above polynomial, when the polynomial be satisfied with the value x = √(3 - m), we will get
2{√(3 - m)}² - 2√3 = 0
⇒ 2{√(3 - m)}² = 2√3
⇒ {√(3 - m)}² = √3
⇒ 3 - m = √3
⇒ m = 3 - √3
Thus, the values of m is
(3 - √3).
Thank you for your question.
Sachinarjun:
it is right
Similar questions