Math, asked by Anonymous, 5 months ago

SOLVE IT ...
ONLY GENIUS .....


#AADI​

Attachments:

Answers

Answered by pulakmath007
17

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

 { \cos}^{ - 1} x -  { \cos}^{ - 1} y =  { \cos}^{ - 1}( xy +  \sqrt{(1 -  {x}^{2})(1 -  {y}^{2} ) }

TO FIND

\displaystyle \lim_{n \to  \infin}   \sum\limits_{k=2}^{n}  { \cos}^{ - 1} ( \frac{1 +  \sqrt{(k - 1)k(k + 1)(k + 2)} }{k(k + 1)}

EVALUATION

Here

\displaystyle  \sum\limits_{k=2}^{n}  { \cos}^{ - 1} ( \frac{1 +  \sqrt{(k - 1)k(k + 1)(k + 2)} }{k(k + 1)}

 = \displaystyle  \sum\limits_{k=2}^{n}  { \cos}^{ - 1} (  \frac{1}{k(k + 1)} +  \frac{  \sqrt{(k - 1)k(k + 1)(k + 2)} }{k(k + 1)}

 = \displaystyle  \sum\limits_{k=2}^{n}  { \cos}^{ - 1} (  \frac{1}{k(k + 1)} +  \sqrt{  \frac{ (k - 1)k(k + 1)(k + 2) }{ {k}^{2}  {(k + 1)}^{2} } }

  = \displaystyle  \sum\limits_{k=2}^{n}  { \cos}^{ - 1} (  \frac{1}{k(k + 1)} +  \sqrt{  \frac{ ( {k}^{2} - 1)( {k}^{2} + 2k) }{ {k}^{2}  {(k + 1)}^{2} } }

  = \displaystyle  \sum\limits_{k=2}^{n}  { \cos}^{ - 1} (  \frac{1}{k(k + 1)} +  \sqrt{  \frac{ ( {k}^{2} - 1) \{ {(k + 1)}^{2}  - 1 \} }{ {k}^{2}  {(k + 1)}^{2} } }

  = \displaystyle  \sum\limits_{k=2}^{n}  { \cos}^{ - 1} (  \frac{1}{k(k + 1)} +  \sqrt{ ( 1-   \frac{1}{ {k}^{2} } )(1 -  \frac{1}{ {(k + 1)}^{2} }) }

  = \displaystyle  \sum\limits_{k=2}^{n} ( { \cos}^{ - 1}  \frac{1}{k+1}  - { \cos}^{ - 1}  \frac{1}{k } )

 = \displaystyle ({ \cos}^{ - 1}  \frac{1}{3}  - { \cos}^{ - 1}  \frac{1}{2} + { \cos}^{ - 1}  \frac{1}{4}  - { \cos}^{ - 1}  \frac{1}{3} + ..... + { \cos}^{ - 1}  \frac{1}{n+1}  - { \cos}^{ - 1}  \frac{1}{n })

 = \displaystyle ({ \cos}^{ - 1}  \frac{1}{n+1}   - { \cos}^{ - 1}  \frac{1}{2})

So

\displaystyle \lim_{n \to  \infin}   \sum\limits_{k=2}^{n}  { \cos}^{ - 1} ( \frac{1 +  \sqrt{(k - 1)k(k + 1)(k + 2)} }{k(k + 1)}

 = \displaystyle \lim_{n \to  \infin}   ({ \cos}^{ - 1}  \frac{1}{n+1}   - { \cos}^{ - 1}  \frac{1}{2})

= \displaystyle ( { \cos}^{ - 1}  0 - { \cos}^{ - 1}  \frac{1}{2}   )

= \displaystyle  \frac{\pi}{2}  -  \frac{\pi}{3}

 =  \displaystyle \:    \frac{\pi}{6}

Answered by shadowsabers03
6

Given,

\displaystyle\longrightarrow L=\lim_{n\to\infty}\sum_{k=2}^n\cos^{-1}\left(\dfrac{1+\sqrt{(k-1)k(k+1)(k+2)}}{k(k+1)}\right)\quad\quad\dots(1)

We know the formula,

\longrightarrow \cos^{-1}x-\cos^{-1}y=\cos^{-1}\left(xy+\sqrt{(1-x^2)(1-y^2)}\right)

Replacing x=\dfrac{1}{a} and y=\dfrac{1}{b},

\longrightarrow \cos^{-1}\left(\dfrac{1}{a}\right)-\cos^{-1}\left(\dfrac{1}{b}\right)=\cos^{-1}\left(\dfrac{1}{a}\cdot\dfrac{1}{b}+\sqrt{\left(1-\dfrac{1}{a^2}\right)\left(1-\dfrac{1}{b^2}\right)}\right)

\longrightarrow \cos^{-1}\left(\dfrac{1}{a}\right)-\cos^{-1}\left(\dfrac{1}{b}\right)=\cos^{-1}\left(\dfrac{1}{ab}+\sqrt{\left(\dfrac{a^2-1}{a^2}\right)\left(\dfrac{b^2-1}{b^2}\right)}\right)

\longrightarrow \cos^{-1}\left(\dfrac{1}{a}\right)-\cos^{-1}\left(\dfrac{1}{b}\right)=\cos^{-1}\left(\dfrac{1}{ab}+\sqrt{\dfrac{(a^2-1)(b^2-1)}{a^2b^2}}\right)

\longrightarrow \cos^{-1}\left(\dfrac{1}{a}\right)-\cos^{-1}\left(\dfrac{1}{b}\right)=\cos^{-1}\left(\dfrac{1+\sqrt{(a^2-1)(b^2-1)}}{ab}\right)\quad\quad\dots(2)

We see that,

\longrightarrow\dfrac{1+\sqrt{(k-1)k(k+1)(k+2)}}{k(k+1)}=\dfrac{1+\sqrt{(k-1)(k+1)k(k+2)}}{k(k+1)}

\longrightarrow\dfrac{1+\sqrt{(k-1)k(k+1)(k+2)}}{k(k+1)}=\dfrac{1+\sqrt{(k^2-1)(k^2+2k)}}{k(k+1)}

\longrightarrow\dfrac{1+\sqrt{(k-1)k(k+1)(k+2)}}{k(k+1)}=\dfrac{1+\sqrt{(k^2-1)(k^2+2k+1-1)}}{k(k+1)}

\longrightarrow\dfrac{1+\sqrt{(k-1)k(k+1)(k+2)}}{k(k+1)}=\dfrac{1}{k(k+1)}+\dfrac{\sqrt{(k^2-1)((k+1)^2-1)}}{k(k+1)}

Comparing this with (2) we get,

  • a=k
  • a=k+1

And, for some a<b,

\longrightarrow \cos^{-1}a>\cos^{-1}b

Thus,

\longrightarrow k+1>k

\longrightarrow\dfrac{1}{k+1}<\dfrac{1}{k}

\longrightarrow\cos^{-1}\left(\dfrac{1}{k+1}\right)>\cos^{-1}\left(\dfrac{1}{k}\right)

Therefore,

\longrightarrow\cos^{-1}\left(\dfrac{1}{k+1}\right)-\cos^{-1}\left(\dfrac{1}{k}\right)=\cos^{-1}\left(\dfrac{1}{k(k+1)}+\dfrac{\sqrt{(k^2-1)((k+1)^2-1)}}{k(k+1)}\right)

Then (1) becomes,

\displaystyle\longrightarrow L=\lim_{n\to\infty}\sum_{k=2}^n\left(\cos^{-1}\left(\dfrac{1}{k+1}\right)-\cos^{-1}\left(\dfrac{1}{k}\right)\right)

\displaystyle\longrightarrow L=\lim_{n\to\infty}\sum_{k=2}^n\left(\cos^{-1}\left(\dfrac{1}{k+1}\right)\right)-\lim_{n\to\infty}\sum_{k=2}^n\left(\cos^{-1}\left(\dfrac{1}{k}\right)\right)\quad\quad\dots(3)

Now each summation is written in this way.

\displaystyle\longrightarrow\sum_{k=2}^n\left(\cos^{-1}\left(\dfrac{1}{k+1}\right)\right)=\sum_{k=2}^{n-1}\left(\cos^{-1}\left(\dfrac{1}{k+1}\right)\right)+\left(\cos^{-1}\left(\dfrac{1}{n+1}\right)\right)

\displaystyle\longrightarrow\sum_{k=2}^n\left(\cos^{-1}\left(\dfrac{1}{k+1}\right)\right)=\sum_{k=3}^n\left(\cos^{-1}\left(\dfrac{1}{k}\right)\right)+\left(\cos^{-1}\left(\dfrac{1}{n+1}\right)\right)

Here last term is taken out of the summation.

\displaystyle\longrightarrow\sum_{k=2}^n\left(\cos^{-1}\left(\dfrac{1}{k}\right)\right)=\left(\cos^{-1}\left(\dfrac{1}{2}\right)\right)+\sum_{k=3}^n\left(\cos^{-1}\left(\dfrac{1}{k}\right)\right)

Here first term is taken out of the summation.

Then (3) becomes,

\begin{aligned}\displaystyle\longrightarrow L=\ \ &\lim_{n\to\infty}\left[\sum_{k=3}^n\left(\cos^{-1}\left(\dfrac{1}{k}\right)\right)+\left(\cos^{-1}\left(\dfrac{1}{n+1}\right)\right)\right]\\-\ \ &\lim_{n\to\infty}\left[\left(\cos^{-1}\left(\dfrac{1}{2}\right)\right)+\sum_{k=3}^n\left(\cos^{-1}\left(\dfrac{1}{k}\right)\right)\right]\end{aligned}

\begin{aligned}\displaystyle\longrightarrow L=\ \ &\lim_{n\to\infty}\sum_{k=3}^n\left(\cos^{-1}\left(\dfrac{1}{k}\right)\right)+\lim_{n\to\infty}\left(\cos^{-1}\left(\dfrac{1}{n+1}\right)\right)\\-\ \ &\lim_{n\to\infty}\left(\cos^{-1}\left(\dfrac{1}{2}\right)\right)-\lim_{n\to\infty}\sum_{k=3}^n\left(\cos^{-1}\left(\dfrac{1}{k}\right)\right)\end{aligned}

\displaystyle\longrightarrow L=\lim_{n\to\infty}\left(\cos^{-1}\left(\dfrac{1}{n+1}\right)\right)-\lim_{n\to\infty}\left(\cos^{-1}\left(\dfrac{1}{2}\right)\right)

\displaystyle\longrightarrow L=\left(\cos^{-1}\left(\dfrac{1}{\infty}\right)\right)-\left(\cos^{-1}\left(\dfrac{1}{2}\right)\right)

\displaystyle\longrightarrow L=\cos^{-1}0-\cos^{-1}\left(\dfrac{1}{2}\right)

\displaystyle\longrightarrow L=\dfrac{\pi}{2}-\dfrac{\pi}{3}

\displaystyle\longrightarrow\underline{\underline{L=\dfrac{\pi}{6}}}

Similar questions