Math, asked by vivekbt42kvboy, 4 months ago

Solve it please
answer only ​

Attachments:

Answers

Answered by BlackAura
94

PROVE THAT -:

 { \sf{(cot \theta - cosec \theta) }^{2} =  \frac{1 - cos \theta}{1  +  cos \theta} }

SOLUTION

L.H.S

 { \sf{(cot \theta - cosec \theta) }^{2} } \\  \\  \sf{ \implies \:  \ { (\frac{1}{sin \theta} -   \frac{cos \theta}{sin \theta})  }^{2} } \\  \\  \sf{ \implies \: ({ \frac{1 - cos \theta}{sin \theta} })^{2} } \\  \\  \sf{ \implies \:  \frac{ {(1 - cos \theta})^{2} }{ {(sin \theta})^{2} } } \\  \\   \sf{  \implies\frac{ {(1 - cos \theta)}^{2} }{(1 -  { {cos}^{2} \theta} )} } \\  \\  \sf{ \implies \frac{(1 - cos \theta)(1  - cos \theta)}{(1 + cos \theta)(1 - cos \theta)} } \\  \\  \sf{ \implies \:  \frac{(1 - cos \theta)}{(1 + cos \theta)  }  =R.H.S }

Hence proved R.H.S= L.H.S.

_______________________

Important points !!

✏️tan∅= p/b

✏️cos∅= b/h

✏️sin∅= p/h

✏️sin∅= 1/ cosec∅

✏️ cos∅= 1/sec∅

✏️sin²∅+ cos²∅= 1

_______________________

Answered by Anonymous
16

your answers

hope it will help you

Attachments:
Similar questions
Math, 10 months ago