Math, asked by jain8027, 1 year ago

Solve it Please:

If
x -  \frac{1}{x}  = 9
Find the value of :

 {x}^{2}  +  \frac{1}{ {x}^{2} }

Answers

Answered by XEVILX
27

\huge\bold\orange{Solution!!}

We have :

x-1/x = 9

On squaring both sides :

(x -  \frac{1}{ {x}^{2} } ) =  {9}^{2}

 {x}^{2}  - 2 \times x \times  \frac{1}{x}  +  (\frac{1}{x} ) ^{2}  = 81

 {x}^{2}  - 2 +  \frac{1}{ {x}^{2} }  = 81

 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 81 + 2

 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 83

\bold\yellow{Glad\:to\:help!!}

#Evil_Gurl

Answered by Martin84
0

Answer:

83

Step-by-step explanation:

x -  \frac{1}{x}  = 9 \\ squiring \: both \: side \: we \: get \\  {(x -  \frac{1}{x} })^{2}  =  {9}^{2}  \\  {x}^{2}  +  { (\frac{1}{x}) }^{2}   - 2 = 81 \\  {x}^{2}  -  \frac{1}{ {x}^{2} }  = 83

Similar questions