Math, asked by khzsp1jwkpicc1791, 2 months ago

Solve it please
Need correct answer
(1 + tan^{2} A)÷(1 + cot^{2} A)​

Answers

Answered by ItzMarvels
17

__________________

♧Question♧

\dashrightarrow{ \bigg\{\dfrac{ \sf(1 + tan^{2}A )}{ \sf(1 + cot^{2} A)}\bigg\}}

♧Answer♧

 \dashrightarrow{\Bigg\{\dfrac{ \sf(1 + tan^{2}A )}{ \sf(1 + cot^{2} A)}\bigg\}}  \\  \\  \sf{As  \: we \:  know  \: that \:  \:  \:  \:  \: cot^{2}  =  \frac{1}{tan^{2} }  } \\  \\ \dashrightarrow{ \bigg\{\dfrac{ \sf(1 + tan^{2}A )}{ \sf(1 +  \dfrac{1}{tan^{2}A } )}\bigg\}}  \\  \\  \sf{Now,By \:  taking \:   \red{LCM}} \\  \\ \dashrightarrow{ \bigg\{\dfrac{ \sf(1 + tan^{2}A )}{ (\sf{\frac{tan ^{2}A + 1 }{tan^{2}A })}}\bigg\}}  \\  \\\dashrightarrow{ \bigg\{\dfrac{ \sf(1 + tan^{2}A )}{ (\sf{tan ^{2}A + 1 } )} \times \sf tan ^{2}A \bigg\}}   \\  \\ \dashrightarrow{ \bigg\{ \cancel\dfrac{ \sf(1 + tan^{2}A )}{ (\sf{tan ^{2}A + 1 } )} \times \sf tan ^{2}A \bigg\}}   \\  \\   {\dashrightarrow{ \boxed{ \bigg\{{ \sf \red{tan ^{2}A }}  \bigg\}}}} \sf{ \longleftarrow{Ans}}

___________________

Similar questions