Math, asked by demonportmaxop, 2 months ago

solve it please on copy​

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given inequality is

\rm :\longmapsto\:15x - 6 < 17x + 4 \leqslant 5x + 10

Now,

Consider,

\rm :\longmapsto\:15x - 6 < 17x + 4

On Subtracting 17x from both sides,

\rm :\longmapsto\:15x - 17x - 6  <17x - 17x + 4

\rm :\longmapsto\: - 2x - 6 < 4

On adding 6 on both sides, we get

\rm :\longmapsto\: - 2x - 6  + 6< 4 + 6

\rm :\longmapsto\: - 2x < 10

On dividing by - 2, we get

\bf\implies \:x >  -  \: 5 -  -  - (1)

Consider,

\rm :\longmapsto\:17x + 4 \leqslant 5x + 10

On Subtracting 5x from both sides,

\rm :\longmapsto\:17x + 4  - 5x\leqslant 5x + 10 - 5x

\rm :\longmapsto\:12x + 4 \leqslant10

On Subtracting 4 from both sides, we get

\rm :\longmapsto\:12x + 4  - 4\leqslant10  - 4

\rm :\longmapsto\:12x \leqslant 6

\bf\implies \:x \leqslant \dfrac{1}{2}  -  -  - (2)

From equation (1) and equation (2), we concluded that

\rm :\longmapsto\: - 5 < x \leqslant \dfrac{1}{2}

\bf\implies \:x \:   \in \: ( - 5, \dfrac{1}{2} \bigg]

Additional Information :-

\boxed{ \sf{ \: x > y \:  \implies \:  - x <  - y}}

\boxed{ \sf{ \: x  <  y \:  \implies \:  - x  >   - y}}

\boxed{ \sf{ \: x  <   - y \:  \implies \:  - x  >  y}}

\boxed{ \sf{ \: x > -  y \:  \implies \:  - x <   y}}

\boxed{ \sf{ \: x  \geqslant  y \:  \implies \:  - x  \leqslant   - y}}

\boxed{ \sf{ \: x  \geqslant  -  y \:  \implies \:  - x  \leqslant   y}}

\boxed{ \sf{ \: xy  > 0\:  \implies \:x > 0 \: and \: y > 0 \:  \: or \: x < 0 \: and \: y < 0}}

\boxed{ \sf{ \: xy <  0\:  \implies \:x > 0 \: and \: y  <  0 \:  \: or \: x  <  0 \: and \: y  >  0}}

Attachments:
Similar questions