Math, asked by jeevankishorbabu9985, 2 months ago

Solve it please
 \huge \bold\red{ \mathcal{\int {1 \div 1 + \cos(x.)dx}}}

Answers

Answered by legaspimarkjoseph657
1

Answer:

we have to differentiate f(x)=\frac{1}{1-cosx}f(x)=

1−cosx

1

right ?

can we write f(x) = 1/(1 - cosx) = (1- cosx)^-1

now, using concepts : if a function y = f(x)^n is given then, differentiation of y = dy/dx = n . f(x)^(n - 1) × df(x)/dx

and also you should know differentiation of cosx = -sinx

now, differentiating f(x) = 1/(1 - cosx) or (1 - cosx)^-1

df(x)/dx = d{(1 - cosx)^-1}/dx

= -1(1 - cosx)^{-1 - 1} × d(1 - cosx)/dx

= -1(1 - cosx)^-2 × (0 -(-sinx))

= -1/(1 - cosx)² × sinx

= -sinx/(1 - cosx)²

hence, differentiation of 1/(1 - cosx) = -sinx/(1 - cosx)²

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\int\tt \dfrac{dx}{1 + cosx}

We know,

 \red{ \boxed{ \sf{1 + cos2x \:  =  \:  {2cos}^{2}x }}}

Using this identity, we get

 \rm \:  \:  =  \: \displaystyle\int\tt \dfrac{dx}{ {2cos}^{2}\dfrac{x}{2}  }

 \rm \:  \:  =  \: \dfrac{1}{2}\displaystyle\int\tt  {sec}^{2}\dfrac{x}{2} \: dx

We know,

 \red{ \boxed{ \sf{\displaystyle\int\tt  {sec}^{2} x \:  =  \: tanx + c}}}

 \rm \:  \:  =  \: \dfrac{1}{2} \times \dfrac{tan\dfrac{x}{2} }{\dfrac{1}{2} }  + c

 \rm \:  \:  =  \: tan\dfrac{x}{2} + c

Hence,

\rm :\longmapsto\:\displaystyle\int\tt \dfrac{dx}{1 + cosx}  = tan\dfrac{x}{2} \: +  \:  c

Aliter Method :-

\rm :\longmapsto\:\displaystyle\int\tt \dfrac{dx}{1 + cosx}

On rationalizing the denominator, we get

 \rm \:  \:  =  \: \:\displaystyle\int\tt \dfrac{1}{1 + cosx} \times \dfrac{1 - cosx}{1 - cosx} dx

 \rm \:  \:  =  \: \:\displaystyle\int\tt \dfrac{1 - cosx}{ {1}^{2}  - cos^{2} x}  dx

 \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}  \bigg \}}

 \rm \:  \:  =  \: \displaystyle\int\tt \dfrac{1 - cosx}{ {sin}^{2}x } dx

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: {sin}^{2}x +  {cos}^{2}x = 1 \bigg \}}

 \rm \:  \:  =  \: \displaystyle\int\tt \dfrac{1}{ {sin}^{2}x }dx  - \displaystyle\int\tt \dfrac{cosx}{ {sin}^{2} x}dx

 \rm \:  \:  =  \: \displaystyle\int\tt  {cosec}^{2}x \:  dx - \displaystyle\int\tt \: cosecx \: cotx \:  dx

 \rm \:  \:  =  \:  - cotx \:  +  \: cosecx \:  + c

Hence,

\bf :\longmapsto\:\displaystyle\int\tt \dfrac{dx}{1 + cosx}  = cosecx \:  -  \: cotx \:  +  \: c

Aliter Method :-

\rm :\longmapsto\:\displaystyle\int\tt \dfrac{dx}{1 + cosx}

We know,

 \red{ \boxed{ \sf{ \:cos2x =  \frac{1 -  {tan}^{2}x }{1 +  {tan}^{2}x}}}}

So, given integral can be reduced to

 \rm \:  \:  =  \: \displaystyle\int\tt \dfrac{1}{1 - \dfrac{1 -  {tan}^{2}\dfrac{x}{2}  }{1 + {tan}^{2} \dfrac{x}{2} } } dx

 \rm \:  \:  =  \: \displaystyle\int\tt \dfrac{1}{\dfrac{1 +  {tan}^{2}\dfrac{x}{2}  +  1 -  {tan}^{2}\dfrac{x}{2}  }{1 + {tan}^{2} \dfrac{x}{2} } } dx

 \rm \:  \:  =  \: \displaystyle\int\tt \dfrac{1 +  {tan}^{2} \dfrac{x}{2} }{2} \: dx

 \rm \:  \:  =  \: \dfrac{1}{2}\displaystyle\int\tt  {sec}^{2}\dfrac{x}{2} \: dx

 \red{ \boxed{ \sf{ \because \:  {sec}^{2}x -  {tan}^{2}x = 1  }}}

 \rm \:  \:  =  \: \dfrac{1}{2} \:  \times \dfrac{tan\dfrac{x}{2} }{\dfrac{1}{2} }  + c

 \rm \:  \:  =  \: tan\dfrac{x}{2} + c

Hence,

\rm :\longmapsto\:\displaystyle\int\tt \dfrac{dx}{1 + cosx}  = tan\dfrac{x}{2} \: +  \:  c

Formula Used

 \red{ \boxed{ \sf{\displaystyle\int\tt  {sec}^{2} x \: =  \: tanx \:  +  \: c }}}

 \red{ \boxed{ \sf{\displaystyle\int\tt  {cosec}^{2} x \: = -   \: cotx \:  +  \: c }}}

 \red{ \boxed{ \sf{\displaystyle\int\tt cosecx \: cotx \: dx \:  =  \:  -  \: cosecx + c}}}

Additional Information :-

 \red{ \boxed{ \sf{\displaystyle\int\tt sinx \: dx \: =  -  \: cosx + c }}}

 \red{ \boxed{ \sf{\displaystyle\int\tt cosx \: dx \: =    \: sinx + c }}}

 \red{ \boxed{ \sf{\displaystyle\int\tt tanx \: dx \: =    \:log secx + c }}}

 \red{ \boxed{ \sf{\displaystyle\int\tt cotx \: dx \: =    \:log sinx + c }}}

 \red{ \boxed{ \sf{\displaystyle\int\tt cosecx \: dx \: =    \:log (cosecx - cotx) + c }}}

 \red{ \boxed{ \sf{\displaystyle\int\tt secx \: dx \: =    \:log (secx + tanx) + c }}}

Similar questions