Solve it pleaseeeeeee
Attachments:
Answers
Answered by
3
Explanation:
this is ur answer to the question mate
PLEASE MARK ME AS BRAINLIEST
Attachments:
Answered by
0
What are the effects of population growth on land use change? Despite the interest in and importance of this question, there is a relatively small body of carefully designed research that begins to provide answers to it. In order to make progress in this field we need to understand why careful research on this topic is so scarce, examine the work that has been done, and propose ways to encourage research in an area that may be critical to the future of many countries. One difficulty in developing general answers to the question posed is that much of the existing research has focused on case studies, in which results often depend on idiosyncracies of physical and human endowments. Consequently, although case studies are useful in illuminating particular intricacies of the population and land use relationship, they are not readily compared. In order for them to be comparable, a general framework of analysis would have to be developed and applied systematically to countries or areas in very different circumstances.
A second difficulty in studying the relationship between population growth and land use change is the challenge of precisely matching demographic and ecological data that generally are not collected over the same geographic regions. Demographic surveys are usually conducted by political region, such as a district or country; land use data are more often collected or a particular ecosystem or landscape, which can cross political boundaries. Even when demographic and land use data are gathered for the same area, no area is a closed system because migration complicates population dynamics and climate change complicates land use dynamics.
A third difficulty is that much of the research conducted on population growth and land use change has been weak in identifying and quantifying the set of causal connections between demographic and land use changes, making definitive conclusions difficult. Instead, much of the research has focused on documenting associations between land use changes and demographic variables rather than identifying the specific causes for particular changes.
Billie L. Turner highlighted several additional obstacles to research in this area in his presentation. He stressed that the data are very poor for global comparative studies of land use. Almost all land use data measure conversion of land to human use; there are few data on modification of land use. Other obstacles are the different views among social scientists about what constitutes proof of population and environment linkages. Finally, Turner noted that there is no agreement among scientists about the level of observation suitable for studying population and land use dynamics.
Research on population growth and land use change has been made more complicated by the use of two conflicting paradigms, one based in natural science (or classical economics) and the other in neoclassical economics. The natural science paradigm places more emphasis on the finiteness of resources than on technological and institutional change and the accumulation of physical and human capital. This paradigm views population growth as a threat to the inherent limits of arable land to provide food, shelter, and sustenance. The neoclassical economics paradigm emphasizes the accumulation of both physical and human capital and the substitution of abundant factors for scarce ones. This paradigm suggests that population growth can be the impetus for technological and other changes that mitigate or even eliminate the effects of natural resource limits on economic well-being. Empirical research is capable of indicating which of these paradigms has more explanatory power, but the research base is thin and has not yet led to a body of knowledge on which public or scientific consensus has developed.
Classical economists, beginning with Malthus, stressed the difficulty of maintaining a steady or increasing standard of living given a finite resource base and a growing population. Malthus argued that food production could only grow at a linear rate while populations grew geometrically; thus population growth would ultimately outstrip the ability of the economy to meet the demand for food (Malthus, 1798). Although agricultural production has so far met and often exceeded populations' growing needs for food, there remains a concern among many natural scientists that the ecological limits
A second difficulty in studying the relationship between population growth and land use change is the challenge of precisely matching demographic and ecological data that generally are not collected over the same geographic regions. Demographic surveys are usually conducted by political region, such as a district or country; land use data are more often collected or a particular ecosystem or landscape, which can cross political boundaries. Even when demographic and land use data are gathered for the same area, no area is a closed system because migration complicates population dynamics and climate change complicates land use dynamics.
A third difficulty is that much of the research conducted on population growth and land use change has been weak in identifying and quantifying the set of causal connections between demographic and land use changes, making definitive conclusions difficult. Instead, much of the research has focused on documenting associations between land use changes and demographic variables rather than identifying the specific causes for particular changes.
Billie L. Turner highlighted several additional obstacles to research in this area in his presentation. He stressed that the data are very poor for global comparative studies of land use. Almost all land use data measure conversion of land to human use; there are few data on modification of land use. Other obstacles are the different views among social scientists about what constitutes proof of population and environment linkages. Finally, Turner noted that there is no agreement among scientists about the level of observation suitable for studying population and land use dynamics.
Research on population growth and land use change has been made more complicated by the use of two conflicting paradigms, one based in natural science (or classical economics) and the other in neoclassical economics. The natural science paradigm places more emphasis on the finiteness of resources than on technological and institutional change and the accumulation of physical and human capital. This paradigm views population growth as a threat to the inherent limits of arable land to provide food, shelter, and sustenance. The neoclassical economics paradigm emphasizes the accumulation of both physical and human capital and the substitution of abundant factors for scarce ones. This paradigm suggests that population growth can be the impetus for technological and other changes that mitigate or even eliminate the effects of natural resource limits on economic well-being. Empirical research is capable of indicating which of these paradigms has more explanatory power, but the research base is thin and has not yet led to a body of knowledge on which public or scientific consensus has developed.
Classical economists, beginning with Malthus, stressed the difficulty of maintaining a steady or increasing standard of living given a finite resource base and a growing population. Malthus argued that food production could only grow at a linear rate while populations grew geometrically; thus population growth would ultimately outstrip the ability of the economy to meet the demand for food (Malthus, 1798). Although agricultural production has so far met and often exceeded populations' growing needs for food, there remains a concern among many natural scientists that the ecological limits
Similar questions