Math, asked by Anonymous, 1 year ago

Solve it pleaseeeeeee............fast.......

Attachments:

Answers

Answered by Rudra0936
20

  \blue{\bold{answer = 8}}

 =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =

_______________________________________________________

Explanation:-

  • Given cosec A= √2

 \red{cosec \: theta =  \frac{hypotenus(h)}{perpendicular(p)} }

N

 =  >  \frac{h}{p}  =  \sqrt{2}  \\  \\   =  >  \red{ \boxed{h =  \sqrt{2} \: and \: p = 1 }}

Now ,by applying Pythagoras theorem we can find the base of the triangle ✓ which is as follows✓

 =  >  \green{b =  \sqrt{h^{2}  - p ^{2} } } \\  \\   =  > \green{b =  \sqrt{ (\sqrt{2})^{2} - 1^{2}  } } \\  \\  =   > \green{b =  \sqrt{2 - 1} } \\  \\  =  >  \green{b =  \sqrt{1} = 1 }

So by the above calculation we find the base of the triangle is

 \red{1}

Now ,we have to find the other trigonometric ratios

sin \: a =  \frac{p}{h}  =  \frac{1}{ \sqrt{2} }  \\  \\  =  > cot \: a =  \frac{b}{p}  = \frac{1}{1}  = 1 \\  \\  =  > tan \: a =  \frac{p}{b}  =  \frac{1}{1}  = 1 \\  \\  =  > cos \: a =  \frac{b}{h}  =  \frac{1}{ \sqrt{2} }

Now let us solve this problem by using the ratios ✓

 =  >  \frac{2sin^{2}a   + 3cot^{2} a}{tan ^{2}a - cos ^{2}a} \\  \\  =  >  \frac{2 \times ( \frac{1}{ \sqrt{2} } ) ^{2}  + 3 \times 1 ^{2} }{1^{2}  -  (\frac{1}{ \sqrt{2} }) ^{2}  }  \\  \\  =  >  \frac{ \frac{2}{2}  + 3}{1 -  \frac{1}{2} } \\  \\  =  >  \frac{1 + 3}{ \frac{2 - 1}{2} }  \\  \\  =  >  \frac{4}{ \frac{1}{2} }  \\   \\ =  > \red{8}

Similar questions