solve it pls i will mark as brainliest
Attachments:
Answers
Answered by
7
Given tanA = xsinB/1 - xcosB and tan B = ysinA/1 - ycosA.
We know that cotA = 1/tanA.
cotA = 1/xsinB/1 - xcosB
= 1-xcosB/xsinB
= 1/xsinB - xcosB/xsinB
= 1/xsinB - cotB
CotA + cotB = 1/xsinB -------- (1)
We know that Cot B = 1/tan B
= 1/ysinA/1-ycosA
= 1-ycosA/ysinA
= 1/ysinA - ycosA/ysinA
= 1/ysinA - cotA
Cot B + Cot A = 1/ysinA ----------- (2).
On solving (1) & (2), we get
cotA + cotB - cotA - cotB = 1/xsinB - 1/ysinA
1/xsinB = 1/ysinA
sinA/sinB = x/y.
Hope this helps!
We know that cotA = 1/tanA.
cotA = 1/xsinB/1 - xcosB
= 1-xcosB/xsinB
= 1/xsinB - xcosB/xsinB
= 1/xsinB - cotB
CotA + cotB = 1/xsinB -------- (1)
We know that Cot B = 1/tan B
= 1/ysinA/1-ycosA
= 1-ycosA/ysinA
= 1/ysinA - ycosA/ysinA
= 1/ysinA - cotA
Cot B + Cot A = 1/ysinA ----------- (2).
On solving (1) & (2), we get
cotA + cotB - cotA - cotB = 1/xsinB - 1/ysinA
1/xsinB = 1/ysinA
sinA/sinB = x/y.
Hope this helps!
Anonymous:
Good!]
Answered by
5
HELLO DEAR,
Given tan A = x sinB / (1 - xcos B) and
tan B = ysin A / (1 - ycos A)
⇒ tan A (1 - xcos B) = xsin B
⇒ tan A - xtan Acos B = xsin B
⇒ tan A = xsin B + x tan A cos B
⇒ tan A = x(sin B + tan A cos B)
⇒sin A / cos A = x(sin B + (sin A / cos A) cos B)
⇒sin A = x (sin B cos A+ sin A cos B)
⇒sin A = x sin (A + B) ----------(1)
similarly sin B = y(sin A cos B + sin B cos A) -------(2)
sin B = y sin (A + B) -------(2)
Divide (1) by (2) we get
sin A / sin B = x / y.
I HOPE ITS HELP YOU DEAR, :-)
Given tan A = x sinB / (1 - xcos B) and
tan B = ysin A / (1 - ycos A)
⇒ tan A (1 - xcos B) = xsin B
⇒ tan A - xtan Acos B = xsin B
⇒ tan A = xsin B + x tan A cos B
⇒ tan A = x(sin B + tan A cos B)
⇒sin A / cos A = x(sin B + (sin A / cos A) cos B)
⇒sin A = x (sin B cos A+ sin A cos B)
⇒sin A = x sin (A + B) ----------(1)
similarly sin B = y(sin A cos B + sin B cos A) -------(2)
sin B = y sin (A + B) -------(2)
Divide (1) by (2) we get
sin A / sin B = x / y.
I HOPE ITS HELP YOU DEAR, :-)
Similar questions