Math, asked by rajdeep189, 1 month ago

Solve it plz...
 \frac{\sec(a)  - 1}{\sec(a)   +  1}  =( \frac{ { \sin(a) } }{1 +  \cos(a) } ) ^{2}

Answers

Answered by sharanyalanka7
6

Answer:

Step-by-step explanation:

To Prove :-

\dfrac{secA-1}{secA+1}=\left(\dfrac{sinA}{1+cosA}\right)^2

How to Do :-

First of all we need to covert 'secA' in terms of 'cosA' and we need to simplify it. Next by applying a trigonometric identity we can prove that L.H.S = R.H.S.

Formula Required :-

secA = 1/cosA

sin²A + cos²A = 1

Solution :-

Taking L.H.S :-

= \dfrac{secA-1}{secA+1}

= \dfrac{\dfrac{1}{cosA}-1}}{\dfrac{1}{cosA}+1}

[∴ secA = 1/cosA]

=\dfrac{\dfrac{1-cosA}{cosA}}{\dfrac{1+cosA}{cosA}}

=\dfrac{1-cosA}{cosA}\times \dfrac{cosA}{1+cosA}

=\dfrac{1-cosA}{1+cosA}

Multiplying and dividing with '1 + cosA' :-

=\dfrac{1-cosA}{1+cosA}\times \dfrac{1+cosA}{1+cosA}

=\dfrac{1^2-cos^2A}{(1+cosA)^2}

=\dfrac{1-cos^2A}{(1+cosA)^2}

=\dfrac{sin^2A}{(1+cosA)^2}

[∴ 1 - cos²A = 1]

=\left(\dfrac{sinA}{1+cosA}\right)^2

= R.H.S

Hence Proved.

Similar questions