Math, asked by rajdeep189, 1 month ago

Solve it plz...
  \frac{\sin(a)  - 2   \sin ^{3} (a)  }{2 \cos ^{3} (a) -  \cos(a)  }  =  \tan(a)

Answers

Answered by ItzMeMukku
4

~~~~~~~~~~~

~~~~~~~~~~~ \bigstar\underline\bold\color{red}{TO~ PROVE: }

~~~~~~~~~~~

\longrightarrow{}\dfrac{sin \: A - 2sin^{3} \: A}{2cos^{3} A-cos \: A}=tan \: A

~~~~~~~~~~~

~~~~~~~~~~~ \bigstar\underline\bold\color{red}{EXPLANATION:}

~~~~~~~~~~~

\longrightarrow{}\dfrac{sin \: A - 2sin^{3} \: A}{2cos^{3} A-cos \: A}=tan \: A

~~~~~~~~~~~

\longrightarrow{}\dfrac{sin\: A(1 - 2sin^{2} \: A)}{cos\: A(2cos^{2} A-1)}=tan \: A

~~~~~~~~~~~

\longrightarrow{}\boxed{ \large{ \bold{ \frac{sin\: A}{cos\: A} = tan\: A }}}

~~~~~~~~~~~

\longrightarrow{}\boxed{ \large{ \bold{ 1 - {sin}^{2} \: A = {cos}^{2}\: A }}}

~~~~~~~~~~~

\longrightarrow{}\sf{tan\: A \left(\dfrac{1 - 2sin^{2} \: A}{2(1 -{sin}^{2} \: A )-1}\right)=tan \: A}

~~~~~~~~~~~

\longrightarrow{}\sf{tan\: A \left(\dfrac{1 - 2sin^{2} \: A}{2-2{sin}^{2} \: A -1} \right)=tan \: A}

~~~~~~~~~~~

\longrightarrow{}\sf{tan\: A \left(\dfrac{1 - 2sin^{2} \: A}{1-2{sin}^{2} \: A} \right)=tan \: A}

~~~~~~~~~~~

Thankyou :)

Similar questions