Math, asked by monjyotiboro, 1 month ago

solve it :

Question from Application of derivative​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

➢ Given function is

\rm :\longmapsto\:f(x) =  |x - 1|  +  {x}^{2}

We know,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x|  = \begin{cases} &\sf{ - x \:  \: if \: x < 0} \\ &\sf{x \:  \:  \: if \: x \geqslant 0} \end{cases}\end{gathered}\end{gathered}

Let first define the function as

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:f(x) = \begin{cases} &\sf{ - (x - 1) +  {x}^{2} \:  \: if \: x < 1 } \\ &\sf{x  -  1 +  {x}^{2}  \:  \: if \: x \:  \geqslant 1} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:f(x) = \begin{cases} &\sf{ - x  + 1+  {x}^{2} \:  \: if \: x < 1 } \\ &\sf{{x}^{2} + x  -  1  \:  \: if \: x \:  \geqslant 1} \end{cases}\end{gathered}\end{gathered}

 \red{\begin{gathered}\begin{gathered}\bf\: \bf :\longmapsto\:f(x) = \begin{cases} &\sf{{x}^{2}  - x + 1\:  \: if \: x < 1 } \\ &\sf{{x}^{2} + x  -  1  \:  \: if \: x \:  \geqslant 1} \end{cases}\end{gathered}\end{gathered}}

Thus, Breaking point is x = 1, hence we have to check continuity and differentiability at x = 1.

Now, To check continuity at x = 1.

\rm :\longmapsto\:f(1) = 1 + 1  -  1 = 0

LHL

\rm :\longmapsto\:\displaystyle\lim_{x \to 1^-} \: f(x)

\rm \:  =  \:  \: \displaystyle\lim_{x \to 1^-}( {x}^{2} - x + 1)

 \purple{ \sf{ \: Put \: x = 1 - h, \: As \: x \to \: 1, \: so \: h \:  \to \: 0}}

\rm \:  =  \:  \: \displaystyle\lim_{h \to 0}( {(1 - h)}^{2} - (1 - h) + 1)

\rm \:  =  \:  \: 1 - 1 + 1

\rm \:  =  \:  \: 1

So,

\bf :\longmapsto\:\displaystyle\lim_{x \to 1^-} \: f(x) = 1

Now,

Consider,

RHL

\rm :\longmapsto\:\displaystyle\lim_{x \to 1^ + } \: f(x)

\rm \:  =  \:  \: \displaystyle\lim_{x \to 1^ + }( {x}^{2} + x  -  1)

 \purple{ \sf{ \: Put \: x = 1 + h, \: As \: x \to \: 1, \: so \: h \:  \to \: 0}}

\rm \:  =  \:  \: \displaystyle\lim_{h \to 0}( {(1  +  h)}^{2} + (1  +  h)  -  1)

\rm \:  =  \:  \: 1 + 1 - 1

\rm \:  =  \:  \: 1

So,

\bf :\longmapsto\:\displaystyle\lim_{x \to 1^ + } \: f(x) = 1

So, we concluded that

\rm :\longmapsto\:\displaystyle\lim_{x \to 1^-}f(x) = \displaystyle\lim_{x \to 1^ + }f(x) = f(1) = 1

\pink{\bf\implies \:f(x) \: is \: continuous \: at \: x = 1}

Now, To check differentiability at x = 1.

Consider, RHD

\rm :\longmapsto\:\displaystyle\lim_{x \to 1^-}\dfrac{f(x) - f(1)}{x - 1}

\rm \:  =  \:  \: \displaystyle\lim_{x \to 1^-}\dfrac{ {x}^{2} - x + 1 - 1 }{x - 1}

\rm \:  =  \:  \: \displaystyle\lim_{x \to 1^-}\dfrac{ {x}^{2} - x }{x - 1}

\rm \:  =  \:  \: \displaystyle\lim_{x \to 1^-}\dfrac{ x(x - 1) }{x - 1}

\rm \:  =  \:  \: \displaystyle\lim_{x \to 1^-}x

 \purple{ \sf{ \: Put \: x = 1 - h, \: As \: x \to \: 1, \: so \: h \:  \to \: 0}}

\rm \:  =  \:  \: \displaystyle\lim_{h \to 0}(1 - h)

\rm \:  =  \:  \: 1

So,

\rm :\longmapsto\:\displaystyle\lim_{x \to 1^-}\dfrac{f(x) - f(1)}{x - 1}  = 1

Now,

Consider, RHD

\rm :\longmapsto\:\displaystyle\lim_{x \to 1^ + }\dfrac{f(x) - f(1)}{x - 1}

\rm \:  =  \:  \: \displaystyle\lim_{x \to 1^ + }\dfrac{ {x}^{2} + x  - 1 - 1 }{x - 1}

\rm \:  =  \:  \: \displaystyle\lim_{x \to 1^ + }\dfrac{ {x}^{2} + x  - 2 }{x - 1}

\rm \:  =  \:  \: \displaystyle\lim_{x \to 1^ + }\dfrac{ {x}^{2} + 2x  - x - 2 }{x - 1}

\rm \:  =  \:  \: \displaystyle\lim_{x \to 1^ + }\dfrac{ {x}(x + 2)  - 1(x  + 2) }{x - 1}

\rm \:  =  \:  \: \displaystyle\lim_{x \to 1^ + }\dfrac{(x + 2)(x - 1) }{x - 1}

\rm \:  =  \:  \: \displaystyle\lim_{x \to 1^ + }(x + 2)

 \purple{ \sf{ \: Put \: x = 1 + h, \: As \: x \to \: 1, \: so \: h \:  \to \: 0}}

\rm \:  =  \:  \: \displaystyle\lim_{h \to 0 }(1 + h + 2)

\rm \:  =  \:  \: 3

So,

\rm :\longmapsto\:\displaystyle\lim_{x \to 1^ + }\dfrac{f(x) - f(1)}{x - 1}  = 3

So, we concluded that

\rm\implies\:LHD \:  \ne \: RHD

\pink{\bf\implies \:f(x) \: is \:not \: differentiable \: at \: x = 1}

Hence, Option (b) is correct.

Similar questions