Math, asked by lovmishra, 3 months ago

solve it solve it 2 and 3 question ​

Attachments:

Answers

Answered by sandy1816
5

2. \:  \:  \:  \:  \frac{3 + 2 \sqrt{2} }{3 - 2 \sqrt{2} }  = a - b \sqrt{2}  \\  \frac{3 + 2 \sqrt{2} }{3 - 2 \sqrt{2} }  \times  \frac{3  +  2 \sqrt{2} }{3 + 2 \sqrt{2} } =  a - b \sqrt{2}  \\  \frac{9 + 6 \sqrt{2}  + 6 \sqrt{2}  + 8}{9 - 8}  = a - b \sqrt{2}  \\ 17 + 12 \sqrt{2}  = a - b \sqrt{2}  \\ a = 17 \:  \: \:  \:   \: b =  - 12 \\  \\ 3. \:  \:  \:  \: x =  \frac{2 -  \sqrt{3} }{2 +  \sqrt{3} }  \\ y =  \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  \\ x + y =  \frac{2 -  \sqrt{3} }{2 +  \sqrt{3} }  +  \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  \\  =  \frac{( {2 -  \sqrt{3})  }^{2}  + ( {2 +  \sqrt{3} })^{2} }{4 - 3}  \\  = 2(4 + 3) \\  = 14 \\ xy = 1 \\ now \:  \:  \:  \:  {x}^{2}  +  {y}^{2}  = ( {x + y})^{2}  - 2xy \\  = ( {14})^{2}  - 2 \times 1 \\  = 196 - 2 \\  = 194

Answered by lata40386
2

Answer:

this is the answer of your 2nd.

hope it helps you!!

if yes then please mark my answer as brainliest!!!!

and the lines in your bio are really amazing bro!

Attachments:
Similar questions