Math, asked by Anonymous, 1 month ago

solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it.​

Attachments:

Answers

Answered by mathdude500
18

\large\underline{\sf{Given- }}

\rm :\longmapsto\:\dfrac{ \sqrt{x + 1}  -  \sqrt{x - 1} }{ \sqrt{x + 1}  +  \sqrt{x - 1} }  = \dfrac{1}{2}

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:value \: of \: x

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

\rm :\longmapsto\:If \: \dfrac{a}{b} = \dfrac{c}{d}  \: then \:

 \red{\boxed{ \sf{ \:\dfrac{b}{a}  = \dfrac{d}{c} \: is \: called \: invertendo}}}

 \red{\boxed{ \sf{ \:\dfrac{a + b}{a - b}  = \dfrac{c + d}{c - d} \: is \: called \: componendo \: and \: dividendo}}}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\dfrac{ \sqrt{x + 1}  -  \sqrt{x - 1} }{ \sqrt{x + 1}  +  \sqrt{x - 1} }  = \dfrac{1}{2}

On using process of invertendo, we get

\rm :\longmapsto\:\dfrac{ \sqrt{x + 1}  +   \sqrt{x - 1} }{ \sqrt{x + 1}  -  \sqrt{x - 1} }  = \dfrac{2}{1}

On Applying Componendo and Dividendo, we get

\rm :\longmapsto\:\dfrac{ \sqrt{x + 1}  +   \sqrt{x - 1} +(\sqrt{x + 1} -\sqrt{x - 1})}{ \sqrt{x + 1} +  \sqrt{x - 1} -(\sqrt{x + 1} - \sqrt{x - 1}) }  = \dfrac{2 + 1}{2 - 1}

\rm :\longmapsto\:\dfrac{ \sqrt{x + 1}  +   \sqrt{x - 1} +  \sqrt{x + 1} -  \sqrt{x - 1}  }{ \sqrt{x + 1} +  \sqrt{x - 1} -  \sqrt{x + 1}   +  \sqrt{x - 1} }  = \dfrac{2 + 1}{2 - 1}

\rm :\longmapsto\:\dfrac{ 2\sqrt{x + 1}  }{2\sqrt{x - 1}}  = \dfrac{3}{1}

\rm :\longmapsto\:\dfrac{ \sqrt{x + 1}  }{\sqrt{x - 1}}  = \dfrac{3}{1}

On squaring both sides, we get

\rm :\longmapsto\:\dfrac{x + 1}{x - 1}  = \dfrac{9}{1}

\rm :\longmapsto\:9x - 9 = x + 1

\rm :\longmapsto\:9x - x = 9 + 1

\rm :\longmapsto\:8x = 10

\rm :\longmapsto\:4x = 5

\bf\implies \:x = \dfrac{5}{4}

Additional Information :-

\rm :\longmapsto\:If \: \dfrac{a}{b} = \dfrac{c}{d}  \: then \:

 \red{\boxed{ \sf{ \:\dfrac{a}{c}  = \dfrac{b}{d} \: is \: called \: alternendo}}}

 \red{\boxed{ \sf{ \:\dfrac{a + b}{b}  = \dfrac{c + d}{d} \: is \: called \: componendo}}}

 \red{\boxed{ \sf{ \:\dfrac{a  -  b}{b}  = \dfrac{c  -  d}{d} \: is \: called \: dividendo}}}

Answered by Anonymous
31

Given:

\:  \:  \:  \:  \:  \tt \:  \dfrac{ \sqrt{x + 1 }-  \sqrt{x  - 1} } { \sqrt{x  +  1} -  \sqrt{x - 1}  }   =  \dfrac{1}{2}

Solution:

\tt \:  \dfrac{ \sqrt{x + 1 }-  \sqrt{x  - 1} } { \sqrt{x  +  1} -  \sqrt{x - 1}  }   =  \dfrac{1}{2}  \\  \\   \\

Applying Componendo and Dividendo we get:

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \implies \tt \:  \dfrac{ \sqrt{x + 1 }-  \sqrt{x  - 1}  + \sqrt{x + 1 }+ \sqrt{x  - 1}} {  \sqrt{x + 1 }-  \sqrt{x  - 1}   -  \sqrt{x + 1 } - \sqrt{x  - 1}  }   =  \dfrac{3}{ - 1} \:   \\  \\  \\  \tt \implies  \frac{2 \sqrt{x + 1} }{ - 2 \sqrt{x - 1} }  =  \frac{3}{ - 1}  \\  \\  \\  \tt \implies \frac { \cancel{2} \sqrt{x + 1} }{  \cancel{2 }\sqrt{x - 1} } = 3 \\  \\  \\  \tt \implies \frac{x + 1}{x - 1}  = 9 \\  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt \implies9(x - 1) = x + 1 \\  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt \implies9x - 9 = x + 1 \\  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt \implies9x - x = 9 + 1 \\  \\  \\\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \tt \implies8x = 10 \\  \\  \\\:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \: \tt \implies \: x =  \frac{10}{8} \\  \\  \\\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:   \:  \:  \:  \:  \: \tt \implies \: x =  \frac{ \cancel{10}}{ \cancel{8}}  \\  \\  \\  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \: \  \:  \:  \: \ \: \:  \:  \:  \:\:\implies \tt \: x =  \frac{5}{4}

________________________________________

  • Hence Solved!

Explore more:

1. Dividendo:

  • a – b : b = c – d : d

2. Componendo

  • a + b : b = c + d : d

3. Componendo and Dividendo:

  • a + b : a – b = c + d : c – d

4. Convertendo:

  • a : a – b = c : c – d

Similar questions