Math, asked by amanraj90, 2 months ago

solve it step by step.. ​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \lim_{ x\rarr \pi}  \frac{ \sin(\pi - x) }{\pi(\pi - x)}  \\

  = \lim_{ (x - \pi)\rarr 0}  \frac{ \sin  \{- (x - \pi ) \} }{\pi \{ - (x - \pi ) \}}  \\

  = \lim_{ (x - \pi)\rarr 0}  \frac{  - \sin (x - \pi )}{ - \pi  (x - \pi ) }  \\

  = \lim_{ (x - \pi)\rarr 0}  \frac{  \sin (x - \pi )}{  \pi  (x - \pi ) }  \\

  = \frac{1}{\pi}  \lim_{ (x - \pi)\rarr 0}  \frac{  \sin (x - \pi )}{   (x - \pi ) }  \\

  = \frac{1}{\pi}   \times 1 \\

  = \frac{1}{\pi}    \\

Similar questions