Math, asked by sunnyvarma1542004, 1 year ago

solve it step by step plzz 16th and 17 th one​

Attachments:

Answers

Answered by Anonymous
14

\underline{\sf Explanation:}

Q1)

\sf z = \frac{5}{(1-i) (2-i) (3-i)}

\longrightarrow\sf \frac{5}{(1-i) (2-i) (3-i)}

\longrightarrow \sf \frac{5}{(2 - i - 2i + i^2 )(3 - i)}

\longrightarrow \sf \frac{5}{(2 - 3i - 1)(3 - i)}

\longrightarrow\sf \frac{5}{(1- 3i) (3 - i) }

\longrightarrow \sf \frac{5}{3-i-9i+3i^2 }

\longrightarrow\sf \frac{5}{3 - 10i - 3}

\longrightarrow\sf \frac{5}{-10i}

\longrightarrow\sf\frac{1}{-2i}

multiply and divide by i

\longrightarrow\sf\frac{1 \times i }{-2i \times i }

\longrightarrow\sf\frac{1i}{-2i^2}

\longrightarrow\sf\frac{1i}{2}

therefore (\sf\frac{1}{2}i )is a purely imaginary number.

____________________________

Q2)

\sf \frac{x}{(1+2i)}+\frac{y}{(3+2i)} = \frac{(5+6i)}{(-1+8i)}

\longrightarrow\sf\frac{x(3+2i)+y(1+2i)}{(1+2i)(3+2i)}=\frac{(5+6i)}{(-1+8i)}

\longrightarrow\sf\frac{3x+2xi+y+2yi}{3+2i+6i+4i^2} = \frac{5+6i}{-1+8i}

\longrightarrow\sf \frac{(3x + y) + i(2x + 2y) }{3+8i-4} = (\frac{5+6i}{-1+8i})

\longrightarrow\sf\frac{(3x + y) + i (2x + 2y) }{-1 + 8i}  = (\frac{5+6i}{-1+8i})

\longrightarrow\sf (3x + y) + i(2x + 2y) = 5 + 6i

Now, compare the real and imaginary values,

\sf 3x + y = 5

and \sf 2x + 2y = 6 ---(1)

multiply \sf 3x + y = 5 by 2

\longrightarrow\sf 6x + 2y = 10 -----(2)

subtract equation (1) from (2)

6x + 2y = 10

2x + 2y = 6

(-)-----(-)-----(-)

______________

4x = 4

\longrightarrow\sf x = 1

put the value of x in equation (1)

\longrightarrow\sf 2x + 2y = 6

\longrightarrow\sf 2(1)+2y = 6

\longrightarrow\sf 2 + 2y = 6

\longrightarrow\sf y = (\frac{6 - 2}{2})

Hence y = 2

therefore the values of x and y are 1 and 2

Similar questions