Math, asked by rahikaamber2145, 5 months ago

solve it....
step bystep explanation​

Attachments:

Answers

Answered by Anonymous
3

\large\underline{ \underline{ \sf{ \red{given:} }}}  \\  \\

 \sf{ {x}^{2} +  \frac{1}{ {x}^{2} } = 6  } \\

 \\  \\ \large\underline{ \underline{ \sf{ \red{to \: find:} }}}  \\  \\  \sf \:  {x}^{4}  +  \frac{1}{ {x}^{4} }  \\

 \\  \\ \large\underline{ \underline{ \sf{ \red{solution:} }}}  \\  \\

 \sf \:  {x}^{2}  +  \frac{1}{ {x}^{2}}  = 6 \\  \\  \\ \rm \: squaring \: both \: sides..... \\  \\  \\  \sf \:  ({x}^{2}  +  { \frac{1}{ {x}^{2} } )}^{2}  =  {6}^{2}  \\  \\  \\  \boxed{  \bf \:  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}   + 2ab} \\  \\

Here ,

  • a = x²

  • b = 1/x²

Putting values ,

 \\   \sf{( {x}^{2}) }^{2}  +  {(  \frac{1}{ {x}^{2} } )}^{2} + 2( \cancel{ {x}^{2}}  )(  \frac{1}{  \cancel{{x}^{2} }} ) = 36 \\  \\  \\  \sf \:  {x}^{4}  +  \frac{1}{ {x}^{4}  }  + 2 = 36 \\  \\  \\ \underline{ \boxed{  \sf \:    \green{{x}^{4}  +  \frac{1}{ {x}^{4}  }  = 34}}}

More identities :-

  • ( a - b )² = a² + b² + 2ab

  • ( a - b )( a + b ) = a² - b²

  • ( a + x )( a + y ) = a² + ( x + y ) + xy
Similar questions