Math, asked by Anonymous, 27 days ago

Solve it:–
\bf{ \dfrac{x - 3}{x + 3}  \:  + \:  \dfrac{x + 3}{x - 3}  \:  =  \: 2\dfrac{1}{2}  }

No spammed answers!
It's a quadratic equation.
Not linear equation.​

Answers

Answered by SƬᏗᏒᏇᏗƦƦᎥᎧƦ
419

Information given to us:

  • \sf{ \dfrac{x - 3}{x + 3}  \:  + \:  \dfrac{x + 3}{x - 3}  \:  =  \: 2\dfrac{1}{2}  }

What we have to calculate:

  • We have to solve them and find out the values of x as it is a quadratic equation so we would be getting two answers.

Performing Calculations:

  • Taking L.C.M.,

:  \longmapsto \: \sf{ \dfrac{(x - 3)(x - 3) \:  +  \: (x + 3)(x + 3)}{(x + 3)(x - 3)}  \: = \:  \dfrac{2 \times 2 + 1}{2}  }

  • Opening brackets:

:  \longmapsto  \: \sf{ \ \dfrac{x(x - 3) - 3(x - 3) \:  +  \: x(x + 3) +3(x + 3)}{x(x - 3) + 3(x - 3)} }

:  \longmapsto  \: \sf{ \ \dfrac{x \times (x - 3) - 3 \times (x - 3) \:  +  \: x \times (x + 3) +3 \times (x + 3)}{x \times (x - 3) + 3 \times (x - 3)} }

:  \longmapsto  \: \sf{ \dfrac{x {}^{2} - 3x + 9 + x {}^{2}  + 3x + 3x + 9 }{x {}^{2}  - 3x + 3x - 9} }

  • Solving it now,

 :  \longmapsto  \: \sf{ \dfrac{2x {}^{2} - 6x + 9 + 9  + 6x }{x {}^{2} - 9} }

:  \longmapsto \:   \sf{\dfrac{2x {}^{2}  + 18}{x {}^{2} - 9 } \:  =  \:  \dfrac{5}{2}  }

:  \longmapsto \:   \sf{\dfrac{2(x {}^{2}  + 9)}{x {}^{2} - 9 } \:  =  \:  \dfrac{5}{2}  }

  • Cross multiplying:

:  \longmapsto \:   \sf{2 \times 2(x {}^{2}   + 9)  \: = \: 5(x {}^{2} - 9)  }

:  \longmapsto \:   \sf{4(x {}^{2}   + 9)  \: = \: 5(x {}^{2} - 9)  }

:  \longmapsto \:   \sf{4 \times (x {}^{2}   + 9)  \: = \: 5 \times (x {}^{2} - 9)  }

:  \longmapsto \:   \sf{4x {}^{2} + 36   \: = \: 5x {}^{2} - 45   }

  • Reversing the sides,

:  \longmapsto \:   \sf{5x {}^{2} - 4x {}^{2}   \: -  45 - 36 \:  =  \: 0 }

:  \longmapsto \:   \sf{x {}^{2}  - 81 \:  =  \: 0}

  • As it is a quadratic equation,

:  \longmapsto \:   \sf{x \:  =  \:  +  \sqrt{81} }

:  \longmapsto \:  \boxed{\sf{x \:  =  \:  +  9}}

Now,

:  \longmapsto \:   \sf{x \:  =  \:   -   \sqrt{81} }

:  \longmapsto \:   \boxed{\sf{x \:  =  \:  -  9}}

Conclusion:

  • -9 and 9 is the answer

Learn More:

  • https://brainly.in/question/24982053
  • https://brainly.in/question/24063686
  • https://brainly.in/question/1090935
Answered by Anonymous
4

Given :-

\bf{ \dfrac{x - 3}{x + 3} \: + \: \dfrac{x + 3}{x - 3} \: = \: 2\dfrac{1}{2} }

To Find:-

Value of x

Solution:-

Refer the attachment

Similar questions