Math, asked by sukantisahoo19, 1 month ago

solve it.
cos(a + 45) = 1 \div  \sqrt{2}(c \\ os \: a - sin \: a)
solve it. ​

Answers

Answered by senboni123456
0

Answer:

Step-by-step explanation:

We have,

\sf{cos(\alpha+45^{\circ})

Using the formula,

\bullet\,\tt{\green{\large{cos(A+B)=cos(A)cos(B)-sin(A)sin(B)}}}

so,

\sf{cos(\alpha+45^{\circ})=cos(\alpha)cos(45^{\circ})-sin(\alpha)sin(45^{\circ})}

\sf{\implies\,cos(\alpha+45^{\circ})=cos(\alpha)\cdot\dfrac{1}{\sqrt{2}}-sin(\alpha)\cdot\dfrac{1}{\sqrt{2}}}

\sf{\implies\,cos(\alpha+45^{\circ})=\dfrac{1}{\sqrt{2}}\{cos(\alpha)-sin(\alpha)\}}

Similar questions