Math, asked by BrainlyMathHelper, 1 year ago

Solve it

cot \frac{\theta}{2}  - cot  {\theta} = cosec \frac{\theta}{2}

Answers

Answered by Swarnimkumar22
20
\bold{Thanks\:For Asking\:Question}

 \frac{cos \frac{ \theta}{2} }{sin \frac{ \theta}{2} } - \frac{cos \theta}{sin \theta} = \frac{1}{sin \frac{ \theta}{2} }

 \frac{sin \theta \: cos \frac{ \theta}{2} - cos \theta \: sin \frac{ \theta}{2} }{sin \frac{ \theta}{2}.sin \theta } = \frac{1}{sin \frac{ \theta}{2} }

sin \frac{ \theta}{2} sin( \theta - \frac{ \theta}{2} ) = sin \frac{\theta}{2} sin{\theta} \\ \\ {sin}^{2} \frac{\theta}{2} - sin \frac{\theta}{2} sin{\theta} = 0

 {sin}^{2} \frac{\theta}{2} (1 - 2cos \frac{\theta}{2} ) = 0 \\ \\ sin {}^{2} \frac{\theta}{2} = 0 = sin {}^{2} 0 \\ \\ {sin}^{2} \frac{\theta}{2} = {sin}^{2} (n\pi { + -0) } \\ \\{ \theta} = 2n\pi \\ \\

1 - 2cos \frac{\theta}{2} = 0 \\ 2cos \frac{\theta}{2} = \frac{1}{2} \: \: \: \: \: \: = cos\frac{\pi}{3} \\ \\ cos \frac{\theta}{2} = cos(2n\pi { + }{ - } \frac{\pi}{3} \\ \\ {\theta} = 4n\pi + - \frac{2\pi}{3}

\underline{Hence\:solved}

\bold{Swarnimkumar21}

Anonymous: rocking se ^_-
Swarnimkumar22: :-)
skh2: well explained
Similar questions