Math, asked by JacIyn, 4 months ago

Solve it :-


 \frac{3 \:  -  \: 5x}{3  \: -  \: 4x}  \:  =  \:  \frac{ - 5x  \: + \:  1}{5x  \: -  \: 1}  \\

Answers

Answered by sudikshayadav28
0

 \pink{hope \: it \: helps \: you..}

Attachments:

JacIyn: what have you got after SPAMMING ????
Answered by thebrainlykapil
16

Question :-

Solve :-

 \dfrac{3 \: - \: 5x}{3 \: - \: 4x} \: = \: \dfrac{ - 5x \: + \: 1}{5x \: - \: 1} \\

 \\  \\

Solution :-

 \\

\qquad \quad {:} \longrightarrow \sf \boxed{\bf{\dfrac{3 \: - \: 5x}{3 \: - \: 4x} \: = \: \dfrac{ - 5x \: + \: 1}{5x \: - \: 1}}} \\

\qquad \quad {:} \longrightarrow \sf {\sf{\dfrac{3 \: - \: 5x}{3 \: - \: 4x} \: = \:  \cancel\dfrac{ - 5x \: + \: 1}{5x \: - \: 1}}} \\

\qquad \quad {:} \longrightarrow \sf {\sf{\dfrac{3 \: - \: 5x}{3 \: - \: 4x} \: = \:  \dfrac{ - 1}{1}}} \\

Now, Using Cross Multiplaction.

\qquad \quad {:} \longrightarrow \sf {\sf{1(3 - 5x) \:  =  \:  - 1(3 - 4x)}} \\

\qquad \quad {:} \longrightarrow \sf {\sf{3 \:  - \:  5x\:  =  \:   - 3 \:   +   \: 4x}} \\

\qquad \quad {:} \longrightarrow \sf {\sf{3 \:   + \:  3\:  =  \:   5x \:   +   \: 4x}} \\

\qquad \quad {:} \longrightarrow \sf {\sf{6\:  =  \:   9x}} \\

\qquad \quad {:} \longrightarrow \sf {\sf{ \dfrac{6}{9} \:  =  \:   x}} \\

\qquad \quad {:} \longrightarrow \sf {\sf{  \cancel\dfrac{6}{9} \:  =  \:   x}} \\

\qquad \quad {:} \longrightarrow \sf  \boxed{\bf{ \dfrac{2}{3} \:  =  \:   x}} \\

━━━━━━━━━━━━━━━━━━━━━━━━━

More For Knowledge :-

\underbrace\red{\boxed{ \sf \green{ Rules \: to \:Solve \: a \: Equation}}}

  • Rule 1 :- Same quantity ( number ) can be added to both side of an equation without changing the equality.
  • Rule 2 :- Same quantity can be subtracted from both sides of an equation without changing the quality
  • Rule 3 :- Both sides of an equation may be multiplied by the same non zero number without changing the quality.
  • Rule 4 :- Both sides of an equation may be divided by the same non zero number without changing the quality.

\begin{gathered}\\ \\\end{gathered}

Note :-

  • It should be noted that some complicated equation can be solved by using two or more of these rules together.

━━━━━━━━━━━━━━━━━━━━━━━━━


JacIyn: Awesome Answer Sir :)
thebrainlykapil: My pleasure
Dɪʏᴀ4Rᴀᴋʜɪ: nice
thebrainlykapil: thanks
Anonymous: Awsm
Similar questions