Math, asked by User8ba24, 1 year ago

Solve it -

 \frac{x}{x - y}  +  \frac{y}{x + y}  +  \frac{2xy}{ {y}^{2}  -  {x}^{2} }

Answers

Answered by Swarnimkumar22
26
\bold{\huge{\underline{Answer-}}}According to the question here we use the a² - b² = (a+b) (a-b)




 \frac{x}{x - y} + \frac{y}{x + y} + \frac{2xy}{ {y}^{2} - {x}^{2} }




\bold{\huge{Step-1}}



 \frac{x(x + y) + y(x - y)}{(x - y)(x + y)}  -  \frac{2xy}{ {x}^{2}  -  {y}^{2} }



\bold{\huge{Step-2}}




 \frac{ {x}^{2} + xy + xy -  {y}^{2}  }{ {x}^{2} -  {y}^{2}  }  -  \frac{2xy}{ {x}^{2}  -  {y}^{2} }



\bold{\huge{Step-3}}




 \frac{ {x}^{2}  + 2xy -  {y}^{2}  - 2xy}{ {x}^{2}  -  {y}^{2} }



\bold{\huge{Step-4}}




 \frac{ {x}^{2}  -  {y}^{2} }{ {x}^{2} -  {y}^{2}  }  = 1





Hence Solved,
Answered by Avengers00
17
\underline{\underline{\Huge{\textbf{Question:}}}}

Solve
\mathbf{\dfrac{x}{x - y} + \dfrac{y}{x + y} + \dfrac{2xy}{ {y}^{2} - {x}^{2} } } ———[1]

\\

\underline{\underline{\Huge{\textbf{Solution:}}}}

\underline{\Huge{\textsf{Step-1:}}}}
Consider the first two terms in the given Expression.

\mathbf{\dfrac{x}{x - y} + \dfrac{y}{x + y}} ———[2]

\\

\underline{\Huge{\textsf{Step-2:}}}}
Consider LCM of the denominators of [1]

\implies LCM(x-y, x+y) = (x-y)(x+y)

\\

\underline{\Huge{\textsf{Step-3:}}}}
Divide LCM by Denominator of first term of [1] & Multiply and Divide the result with first term of [1]

\implies \dfrac{(x-y)(x+y)}{x-y} = (x+y)

Multiply and Divide this value with first term in [1]

\implies \dfrac{x}{x - y} \times \dfrac{x+y}{x+y}

\implies \dfrac{x(x+y)}{(x-y)(x+y)}

\therefore \dfrac{x}{x - y} = \dfrac{x(x+y)}{(x-y)(x+y)}———[3]

\\

\underline{\Huge{\textsf{Step-4:}}}}
Divide LCM by Denominator of second term of [1] & Multiply and Divide the result with second term of [1]

\implies \dfrac{(x-y)(x+y)}{x+y} = (x-y)

Multiply and Divide this value with first term in [1]

\implies \dfrac{x}{x + y} \times \dfrac{x-y}{x-y}

\implies \dfrac{x(x-y)}{(x-y)(x+y)}

\therefore \dfrac{x}{x + y} = \dfrac{x(x-y)}{(x-y)(x+y)} ———[4]

\\

\underline{\Huge{\textsf{Step-5:}}}}
Rewrite Equation [2] using [3] and [4]

\implies \dfrac{x(x+y)}{(x - y)(x+y)} + \dfrac{y(x-y)}{(x + y)(x-y)}

\mathbf{\dfrac{x(x+y) + y(x-y)}{(x + y)(x-y)}} ————[5]

\\

\underline{\Huge{\textsf{Step-6:}}}}
Simplify and Rewrite [5] using the Identity

\boxed{ \mathbf{(a+b)(a-b)= a^{2} - b^{2}}}

\implies \mathbf{\dfrac{x^{2}+xy+xy-y^{2}}{x^{2}-y^{2}}}

\implies \mathbf{\dfrac{x^{2}+2xy-y^{2}}{x^{2}-y^{2}}} ————[6]

\\

\underline{\Huge{\textsf{Step-7:}}}}
Consider third term of [1]

\mathbf{\dfrac{2xy}{y^{2}-x^{2}}}

\implies \dfrac{2xy}{-(x^{2}-y^{2})}

\mathbf{\dfrac{2xy}{y^{2}-x^{2}} =\dfrac{-2xy}{x^{2} - y^{2}}} ————[7]

\\

\underline{\Huge{\textsf{Step-8:}}}}
Rewrite Eq.[1] using [6] & [7]

\implies \dfrac{x^{2}+2xy-y^{2}}{x^{2}-y^{2}} + \dfrac{-2xy}{x^{2} - y^{2}}

\implies \dfrac{x^{2}+2xy-y^{2}-2xy}{x^{2} - y^{2}}

\implies \dfrac{x^{2}-y^{2}}{x^{2} - y^{2}}

\implies \dfrac{1}{1}

\implies 1

\\

\blacksquare \: \mathbf{\dfrac{x}{x - y} + \dfrac{y}{x + y} + \dfrac{2xy}{ {y}^{2} - {x}^{2} } } = \underline{\underline{\huge{1}}}

Swarnimkumar22: Awesome
Avengers00: Thank you (:
Avengers00: thank you
Similar questions