Math, asked by Arshal007, 11 months ago

Solve it!!

\Huge{Prove}[\tex]\  \textless \ br /\  \textgreater \ \  \textless \ br /\  \textgreater \ [tex] \frac{ \sin(A)  -  \sin( B) }{ \cos(A) +  \cos(B) }  +  \frac{ \cos(A)  -  \cos (B)  }{ \sin (A)  +  \sin (B) }  = 0


Answers

Answered by shadowsabers03
1

Question:-

Prove that,

\longrightarrow\sf{\dfrac {\sin A-\sin B}{\cos A+\cos B}+\dfrac {\cos A-\cos B}{\sin A+\sin B}=0}

Solution:-

Assume the given equation to be true. Then,

\longrightarrow\sf{\dfrac {\sin A-\sin B}{\cos A+\cos B}=-\dfrac {\cos A-\cos B}{\sin A+\sin B}\quad\quad\dots(1)}

But remember the sum - to - product identities.

  • \sf{\sin A+\sin B=2\sin\left (\dfrac {A+B}{2}\right)\cos\left (\dfrac{A-B}{2}\right)}

  • \sf{\sin A-\sin B=2\cos\left (\dfrac {A+B}{2}\right)\sin\left (\dfrac {A-B}{2}\right)}

  • \sf{\cos A+\cos B=2\cos\left (\dfrac {A+B}{2}\right)}\cos\left(\dfrac {A-B}{2}\right)

  • \sf{\cos A-\cos B=-2\sin\left (\dfrac {A+B}{2}\right)\sin\left (\dfrac {A-B}{2}\right)}

Then (1) becomes,

\longrightarrow\sf{\dfrac {2\cos\left (\dfrac {A+B}{2}\right)\sin\left (\dfrac {A-B}{2}\right)}{2\cos\left (\dfrac {A+B}{2}\right)\cos\left(\dfrac {A-B}{2}\right)}=-\dfrac {-2\sin\left (\dfrac {A+B}{2}\right)\sin\left (\dfrac {A-B}{2}\right)}{2\sin\left (\dfrac {A+B}{2}\right)\cos\left (\dfrac{A-B}{2}\right)}}

From this we nicely get,

\longrightarrow\sf{1=1}

So the assumed equation is true. Hence the Proof!

Similar questions